
Last Time

(define TOTAL 0)

(define WORKING 0)

(define PREV-OP +)

...

(define (add-digit n) ...)

...

(define (change-total n OP) ...)

...

The add-digit and change-total functions "remember" using TOTAL
, WORKING, and PREV-OP

Designing Functions with State

New design tool: organizational charts

Contract, Purpose, and Header becomes
Contract, Purpose, Effect, and Header

Examples include starting state and effect

Template includes potential assignments

Organizational Chart, Effects, Templates

n add-digit

WORKING

n

OP
change-total

TOTAL PREV-OP

; add-digit : num -> true

; Adds a digit to the number being entered

; Effect: extends number, updates GUI

(define (add-digit n)

 ... n

 ... WORKING ... (set! WORKING ...) ...)

Organizational Chart, Effects, Templates

n add-digit

WORKING

n

OP
change-total

TOTAL PREV-OP

; change-total : num (num num -> num) -> true

; Combines number and total

; Effect: sets total, resets number, sets op, updates GUI

(define (change-total n OP)

 ... n ... OP

 ... WORKING ... (set! WORKING ...)

 ... PREV-OP ... (set! PREV-OP ...)

 ... TOTAL ... (set! TOTAL ...) ...)

1-5

Examples

(begin

 (set! WORKING 0)

 (add-digit 5) "should be" true

 WORKING "should be" 5)

(begin

 (set! WORKING 10)

 (add-digit 5) "should be" true

 WORKING "should be" 105)

Examples

(begin

 (set! TOTAL 3)

 (set! WORKING 5)

 (set! PREV-OP *)

 (change-total 5 +) "should be" true

 TOTAL "should be" 15

 WORKING "should be" 0

 PREV-OP "should be" +)

Simpler Example

Suppose we want a GUI to manage a fish

Run

New rule: keep the view and control separate from the model

The view and control are in the GUI

The model is a fish with a weight

Design the model first

Fish Model

The only operation in the model is feed

; feed : num -> num

; Grows the fish by n, returns new size

; Effect: adjusts the fish’s weight

n feed

WEIGHT

6-12

Fish Model

The only operation in the model is feed

; feed : num -> num

; Grows the fish by n, returns new size

; Effect: adjusts the fish’s weight

n feed

WEIGHT

(define (feed n)

 ... n ... WEIGHT

 ... (set! WEIGHT ...) ...)

(begin

 (set! WEIGHT 1)

 (feed 10) "should be" 11

 WEIGHT "should be" 11)

Fish Model Implementation

; feed : num -> num

; Grows the fish by n, returns new size

; Effect: adjusts the fish’s weight

(define (feed n)

 (begin

 (set! WEIGHT (+ WEIGHT n))

 WEIGHT))

(begin

 (set! WEIGHT 1)

 (feed 10) "should be" 11

 WEIGHT "should be" 11)

Implementing the View and Controller

Use the GUI teachpack to construct view and control

Message objects implement the view

Button callbacks implement the control

View Control Model

Often, the model never calls the control

Complete Fish Program

; The model:

(define WEIGHT 3)

; feed : num -> num

; ...

(define (feed n)

 (begin

 (set! WEIGHT (+ n WEIGHT))

 WEIGHT))

 ... tests here ...

; The view:

(define msg (make-message (number->string WEIGHT)))

; The control:

(define (feed-button n)

 (make-button (string-append "Feed " (number->string n))

 (lambda (evt)

 (draw-message

 msg

 (number->string (feed n))))))

(create-window

 (list (list msg) (list (feed-button 1) (feed-button 3))))

13-17

Multiple Fish

As we saw last time, if we want multiple fish, we can use local

(define (make-fish init-weight)

 (local [(define WEIGHT init-weight)

 (define (feed n)

 (begin

 (set! WEIGHT (+ WEIGHT n))

 WEIGHT))

 ...]

 (create-window ...)))

Evaluating make-fish

(define (make-fish init-weight)

 (local [(define WEIGHT init-weight)

 (define (feed n)

 (begin

 (set! WEIGHT (+ WEIGHT n))

 WEIGHT))

 ...]

 (create-window ...)))

(make-fish 5)

→

...

(local [(define WEIGHT 5)

 (define (feed n)

 (begin

 (set! WEIGHT (+ WEIGHT n))

 WEIGHT))

 ...]

 (create-window ...))

Evaluating make-fish

...

(local [(define WEIGHT 5)

 (define (feed n)

 (begin

 (set! WEIGHT (+ WEIGHT n))

 WEIGHT))

 ...]

 (create-window ...))

→

...

(define WEIGHT65 5)

(define (feed67 n)

 (begin

 (set! WEIGHT65 (+ WEIGHT65 n))

 WEIGHT65))

...

(create-window ...)

Multiple Fish

Every time we call make-fish a new WEIGHT is created for the new fish

We can make a whole aquarium....

How can we get the current total weight of all fish?

How can we auto-feed all fish?

Problem: make-fish returns only a window

The renamed WEIGHT is completely hidden

18-25

Returning the Weight

Does this help?

; make-fish : num -> num

(define (make-fish init-weight)

 (local [(define WEIGHT init-weight)

 ...]

 (begin

 (create-window ...)

 WEIGHT)))

No:

(make-fish 5)

→ (local [(define WEIGHT 5) ...] ... WEIGHT)
→ (define WEIGHT73 5) ... WEIGHT73

→ → (define WEIGHT73 5) ... 5

Returning the Feeder

Only functions inside make-fish can see WEIGHT

So maybe make-fish should return a function:

; make-fish : num -> (num -> num)

(define (make-fish init-weight)

 (local [(define WEIGHT init-weight)

 (define (feed n) ... WEIGHT ...)

 ...]

 (begin

 (create-window ...)

 feed)))

(make-fish 5)

→ (local [(define WEIGHT 5) (define (feed n) ... WEIGHT ...) ...]
 ... feed)

→ (define WEIGHT77 5) (define (feed81 n) ... WEIGHT77 ...) ... feed81

Feeding an Aquarium

; A live-fish is

; (num -> num)

; make-fish : num -> live-fish

...

(define aquarium (list (make-fish 5)

 (make-fish 3)

 (make-fish 12)))

; aq-weight : list-of-live-fish -> num

(define (aq-weight l)

 (foldr (lambda (f r) (+ (f 0) r)) 0 l))

; feed-all : n list-of-live-fish -> ...

(define (feed-all n l)

 (map (lambda (f) (f n)) l))

for-each

The built-in function for-each is like map, but it returns (void)

; feed-all! : n list-of-live-fish -> (void)

; Feeds n to each live-fish in l

; Effect: each live-fish becomes heavier

(define (feed-all! n l)

 (for-each (lambda (f) (f n)) l))

26-31

for-each

The built-in function for-each is like map, but it returns (void)

; feed-all! : n list-of-live-fish -> (void)

; Feeds n to each live-fish in l

; Effect: each live-fish becomes heavier

(define (feed-all! n l)

 (for-each (lambda (f) (f n)) l))

(begin

 (define l (list (make-fish 1) (make-fish 2)))

 (feed-all! 3 l) "should be" (void)

 l "should be" (list (make-fish 4) (make-fish 5)))

?

for-each

The built-in function for-each is like map, but it returns (void)

; feed-all! : n list-of-live-fish -> (void)

; Feeds n to each live-fish in l

; Effect: each live-fish becomes heavier

(define (feed-all! n l)

 (for-each (lambda (f) (f n)) l))

(begin

 (define l (list (make-fish 1) (make-fish 2)))

 (feed-all! 3 l) "should be" (void)

 l "should be" (list (make-fish 4) (make-fish 5)))

?

This test doesn’t completely capture the effect

for-each

The built-in function for-each is like map, but it returns (void)

; feed-all! : n list-of-live-fish -> (void)

; Feeds n to each live-fish in l

; Effect: each live-fish becomes heavier

(define (feed-all! n l)

 (for-each (lambda (f) (f n)) l))

(begin

 (define l (list (make-fish 1) (make-fish 2)))

 (feed-all! 3 l) "should be" (void)

 ((first l) 0) "should be" 4

 ((first (rest l)) 0) "should be" 5)

for-each

The built-in function for-each is like map, but it returns (void)

; feed-all! : n list-of-live-fish -> (void)

; Feeds n to each live-fish in l

; Effect: each live-fish becomes heavier

(define (feed-all! n l)

 (for-each (lambda (f) (f n)) l))

(begin

 (define l (list (make-fish 1) (make-fish 2)))

 (feed-all! 3 l) "should be" (void)

 ((first l) 0) "should be" 4

 ((first (rest l)) 0) "should be" 5)

Testing with state is often difficult

Avoid this difficulty by avoiding state whenever possible

32-35

A Tale of Two Fish Representations

; A fish is

; num

; A live-fish is

; (num -> num)

A fish represents a fish of a particular weight

Feed the fish ⇒ new value

A live-fish represents a fish with a particular identity

Feed the fish ⇒ same value, new state

A Tale of Two Fish Representations

; A fish is

; num

; A live-fish is

; (num -> num)

live-fish is more closely reflects reality

On the one hand, reflecting reality makes things more intuitive

On the other hand, reality can be messy

Key question when designing a program: what to represent

Encapsulation

Packaging fish state with its operations is called encapsulation

More on encapsulation soon...

Design with State Summary

Deciding to use state: often motivated by GUIs

Split into model and view/controller

The design recipe for state

Charts (no handin artifact)

Effects (handin with purpose)

Template with assignments (handin optional)

Multi-step tests (handin as usual)

Design for the single-instance case, then encapsulate if necessary

36-39

