
The Food Chain

Implement the function food-chain which takes a list of fish and returns a
list of fish where each has eaten all of the fish to the left

→

The Food Chain

Implement the function food-chain which takes a list of fish and returns a
list of fish where each has eaten all of the fish to the left

(food-chain ’(3 2 3))

→

’(3 5 8)

Implementing the Food Chain

(define (food-chain l)

 (cond

 [(empty? l) ...]

 [else

 ... (first l)

 ... (food-chain (rest l)) ...]))

Is the result of (food-chain ’(2 3)) useful for getting the result of
(food-chain ’(3 2 3))?

(food-chain ’(3 2 3))
→ ... 3 ... (food-chain ’(2 3)) ...
→ ... 3 ... ’(2 5) ...
→ → ’(3 5 8)

Implementing the Food Chain

Feed the first fish to the rest, then cons:

(define (food-chain l)

 (cond

 [(empty? l) empty]

 [else

 (cons (first l)

 (feed-fish (food-chain (rest l))

 (first l)))]))

(define (feed-fish l n)

 (cond

 [(empty? l) empty]

 [else (cons (+ n (first l))

 (feed-fish (rest l) n))]))

1-5

The Cost of the Food Chain

How long does (feed-fish l) take when l has n fish?

(define (food-chain l)

 (cond

 [(empty? l) empty]

 [else

 (cons (first l)

 (feed-fish (food-chain (rest l))

 (first l)))]))

T(0) = k1

T(n) = k2 + T(n-1) + S(n-1)

where S(n) is the cost of feed-fish

The Cost of the Food Chain with feed-fish

T(0) = k1

T(n) = k2 + T(n-1) + S(n-1)

(define (feed-fish l n)

 (cond

 [(empty? l) empty]

 [else (cons (+ n (first l))

 (feed-fish (rest l) n))]))

S(0) = k3

S(n) = k4 + S(n-1)

Overall, S(n) is proportional to n
T(n) is proportional to n2

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Real fish:

6-13

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

14-17

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

18-21

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

22-25

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to feed all the fish

Real fish are clearly more efficient!

Our algorithm:

Practical Feeding

With real fish, eating accumulates a bigger fish while progressing up the
chain:

Real fish:

Practical Feeding

With real fish, eating accumulates a bigger fish while progressing up the
chain:

Real fish:

Practical Feeding

With real fish, eating accumulates a bigger fish while progressing up the
chain:

Real fish:

26-29

Practical Feeding

With real fish, eating accumulates a bigger fish while progressing up the
chain:

Real fish:

Let’s imitate this in our function

;

;

food-chain-on

 : list-of-num num -> list-of-num

; Feeds fish in l to each other,

; starting with the fish so-far

(define (food-chain-on l so-far) ...)

Accumulating Food

(define (food-chain-on l so-far)

 (cond

 [(empty? l) empty]

 [else

 (cons (+ so-far (first l))

 (food-chain-on

 (rest l)

 (+ so-far (first l))))]))

(define (food-chain l)

 (food-chain-on l 0))

(food-chain ’(3 2 3))

→
(food-chain-on ’(3 2 3) 0)

Accumulating Food

(define (food-chain-on l so-far)

 (cond

 [(empty? l) empty]

 [else

 (cons (+ so-far (first l))

 (food-chain-on

 (rest l)

 (+ so-far (first l))))]))

(define (food-chain l)

 (food-chain-on l 0))

(food-chain-on ’(3 2 3) 0)

→ →
(cons 3 (food-chain-on ’(2 3) 3))

Accumulating Food

(define (food-chain-on l so-far)

 (cond

 [(empty? l) empty]

 [else

 (cons (+ so-far (first l))

 (food-chain-on

 (rest l)

 (+ so-far (first l))))]))

(define (food-chain l)

 (food-chain-on l 0))

(cons 3 (food-chain-on ’(2 3) 3))

→ →
(cons 3 (cons 5 (food-chain-on ’(3) 5)))

30-35

Accumulating Food

(define (food-chain-on l so-far)

 (cond

 [(empty? l) empty]

 [else

 (cons (+ so-far (first l))

 (food-chain-on

 (rest l)

 (+ so-far (first l))))]))

(define (food-chain l)

 (food-chain-on l 0))

(cons 3 (cons 5 (cons 8 (food-chain-on empty 8))))

→ →
(cons 3 (cons 5 (cons 8 empty)))

Accumulators

(define (food-chain-on l so-far)

 (cond

 [(empty? l) empty]

 [else

 (cons (+ so-far (first l))

 (food-chain-on

 (rest l)

 (+ so-far (first l))))]))

The so-far argument of food-chain-on code is an accumulator

The Direction of Information

With structural recusion, information from deeper in the structure is
returned to computation shallower in the structure

(define (fun-for-loX l)

 (cond

 [(empty? l) ...]

 [else

 ... (first l)

 ... (fun-for-loX (rest l)) ...]))

The Direction of Information

An accumulator sends information the other way from shallower in the
structure to deeper

(define (acc-for-loX l accum)

 (cond

 [(empty? l) ...]

 [else

 ... (first l) ... accum ...

 ... (acc-for-loX

 (rest l)

 ... accum ... (first l) ...)

 ...]))

36-39

Another Example: Reversing a List

Implement reverse-list which takes a list and returns a new list with the
same items in reverse order

Pretend that reverse isn’t built in

; reverse-list : list-of-X -> list-of-X

(reverse-list empty) "should be" empty

(reverse-list ’(a b c)) "should be" ’(c b a)

Implementing Reverse

Using the template:

(define (reverse-list l)

 (cond

 [(empty? l) empty]

 [else

 ... (first l) ...

 ... (reverse-list (rest l)) ...]))

Is (reverse-list ’(b c)) useful for computing
(reverse-list ’(a b c))?

Yes: just add ’a to the end

Implementing Reverse

(define (reverse-list l)

 (cond

 [(empty? l) empty]

 [else

 (snoc (first l)

 (reverse-list (rest l)))]))

(define (snoc a l)

 (cond

 [(empty? l) (list a)]

 [else

 (cons (first l)

 (snoc a (rest l)))]))

(snoc ’a ’(c b)) "should be" ’(c b a)

The Cost of Reversing

How long does (reverse l) take when l has n items?

(define (reverse-list l)

 (cond

 [(empty? l) empty]

 [else

 (snoc (first l)

 (reverse-list (rest l)))]))

This is just like the old food-chain
it takes time proportional to n2

40-48

Reversing More Quickly

(reverse-list ’(a b c))

→ →
(snoc ’a (reverse-list ’(b c)))

→ →
(snoc ’a ’(c b))

...

We could avoid the expensive snoc step if only we knew to start the
result of (reverse-list ’(c b)) with ’(a) instead of empty

Reversing More Quickly

(reverse-list ’(a b c))

→ →
(reverse-onto ’(b c) ’(a))

...

It looks like we’ll just run into the same problem with ’b next time
around...

Reversing More Quickly

(reverse-list ’(a b c))

→ →
(reverse-onto ’(b c) ’(a))

→ →
(snoc ’b (reverse-onto ’(c) ’(a)))

???

But this isn’t right anyway: ’b is supposed to go before ’a

Really we should reverse ’(c) onto ’(b a)

Reversing More Quickly

(reverse-list ’(a b c))

→ →
(reverse-onto ’(b c) ’(a))

→ →
(reverse-onto ’(c) ’(b a))

...

And the starting point is that we reverse onto empty...

49-52

Reversing More Quickly

(reverse-list ’(a b c))

→
(reverse-onto ’(a b c) empty)

→ →
(reverse-onto ’(b c) ’(a))

→ →
(reverse-onto ’(c) ’(b a))

→ →
(reverse-onto empty ’(c b a))

→ →
’(c b a)

The second argument to reverse-onto accumulates the answer

Accumulator-Style Reverse

;

;

reverse-onto :

 list-of-X list-of-X -> list-of-X

(define (reverse-onto l base)

 (cond

 [(empty? l) base]

 [else (reverse-onto (rest l)

 (cons (first l)

 base))]))

(define (reverse-list l)

 (reverse-onto l empty))

Foldl

Remember foldr, which is an abstraction of the template?

The pure accumulator version is foldl:

; foldl : (X Y -> Y) Y list-of-X -> Y

(define (foldl ACC accum l)

 (cond

 [(empty? l) accum]

 [else (foldl ACC

 (ACC (first l) accum)

 (rest l))]))

(define (reverse-list l)

 (foldl cons empty l))

53-56

