
HW 8

Implement colors->lines, which breaks a color list into rows

Implement image-plus

Implement offset-image-plus

Implement offset-masked-image-plus

Implement find-image?

The handin server won’t look for find-image?

(i.e., we’ll accept partial homework for HW 8)

1

HW 8 Advice

Most problems require helper functions

Some problems or helpers are structurally recursive

Many problems or helpers require generative recursion

2

Designing Generative Recusion

When you discover that the design recipe isn’t working,
stop writing code

3

Designing Generative Recusion

When you discover that the design recipe isn’t working,
stop writing code

Instead, figure out the algorithm

What is the trivial case?

What are the smaller sub-problems, and how are their solutions
combined?

4

Designing Generative Recusion

When you discover that the design recipe isn’t working,
stop writing code

Instead, figure out the algorithm

What is the trivial case?

What are the smaller sub-problems, and how are their solutions
combined?

Generating sub-problems or combining the answers may require
additional functions

5

Generating Sub-Problems

The key to a sub-problem is that it looks like the original problem (only
smaller)

Example: In odd-items, the sub-problem is a smaller list from which we
want the odd items

Homework: In colors->list, the sub-problem should be a smaller list
from which to extract rows

6

Generating Sub-Problems

The key to a sub-problem is that it looks like the original problem (only
smaller)

Example: In odd-items, the sub-problem is a smaller list from which we
want the odd items

Homework: In colors->list, the sub-problem should be a smaller list
from which to extract rows

Guideline: When the result is a list, try to generate the first item in the list,
then create a sub-problem for the rest of the list

7

New Example

Suppose that instead of rows, we want to convert an image into a list of
columns

(colors->columns (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list (list color1 color4)

 (list color2 color5)

 (list color3 color6))

Structural recursion doesn’t work well

8

Designing the Column Converter

(colors->columns (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list (list color1 color4)

 (list color2 color5)

 (list color3 color6))

The result is a list of columns:

Can we get the first column?

Can we create a list with only the other columns?

9

Designing the Column Converter

(colors->columns (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list (list color1 color4)

 (list color2 color5)

 (list color3 color6))

(colors->columns (list color1 color2 color3

 color4 color5 color6)

 3)

→
(cons (list color1 color4)

 (colors->columns (list color2 color3

 color5 color6)

 2))

10

Designing the Column Converter

(colors->columns (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list (list color1 color4)

 (list color2 color5)

 (list color3 color6))

;

;

extract-first-column :

 list-of-color num -> list-of-color

;

;

drop-first-column :

 list-of-color num -> list-of-color

11

Implementing the Column Converter

(define (colors->columns l n)

 (cond

 [(empty? l) empty]

 [else

 (local [(define c1

 (extract-first-column l n))

 (define rl

 (drop-first-column l n))]

 (cons c1

 (colors->columns rl (sub1 n))))]))

With two pending wishes...

12

Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color1 color4)

13

Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color1 color4)

Again, structural recursion doesn’t work well

Can we get the first item in the column?

Can we create a list whose first column is the rest of the column?

14

Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color1 color4)

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

→
(cons color1

 (extract-first-column

 (list color4 color5 color6)

 3))

15

Designing Extract

Now to satisfy our wish for extract-first-column...

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color1 color4)

(extract-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

→
(cons color1

 (extract-first-column

 (list color4 color5 color6)

 3))

; skip-n : list-of-X nat -> list-of-X

16

Implementing Extract

(define (extract-first-column l n)

 (cond

 [(empty? l) empty]

 [else

 (cons

 (first l)

 (extract-first-column (skip-n l n) n))]))

Implementing skip-n is an exercise in structural recursion on nat

17

Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color2 color3

 color5 color6)

18

Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color2 color3

 color5 color6)

Yet again, structural recursion doesn’t work well

Can we get the first item in the result?

Can we create a list where dropping the first column is the rest of the
answer?

19

Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color2 color3

 color5 color6)

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

→
(cons color2

 (drop-first-column ??? 3))

20

Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color2 color3

 color5 color6)

Can we create a list where dropping the first column is the rest of the
answer?

No getting just the first item doesn’t make a similar sub-problem

21

Designing Drop

Finally, to satisfy our wish for drop-first-column...

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

"should be" (list color2 color3

 color5 color6)

Need to grab an entire row, then skip the row to recur

(drop-first-column (list color1 color2 color3

 color4 color5 color6)

 3)

→
(append (list color2 color3)

 (drop-first-column (list color4 color5 color6) 3))

22

Implementing Drop

(define (drop-first-column l n)

 (cond

 [(empty? l) empty]

 [else

 (append

 (first-n (rest l) (sub1 n))

 (drop-first-column (skip-n l n)))]))

; first-n : list-of-X nat -> list-of-X

; snip-n : list-of-X nat -> list-of-X

The leftover wishes are strightforward

23

Another Example

Implement replace-range, which takes a list, two numbers start and end,
and a value v; the result is a list like the given one, except that v replaces the
elements in positions start to end inclusive

24

Another Example

Implement replace-range, which takes a list, two numbers start and end,
and a value v; the result is a list like the given one, except that v replaces the
elements in positions start to end inclusive

;

;

replace-range :

 list-of-X num num X -> list-of-X

(replace-range ’(a b c d e) 1 3 ’x)

"should be"

’(a x x x e)

25

Designing Replacement

(replace-range ’(a b c d e) 1 3 ’x)

"should be"

’(a x x x e)

(replace-range ’(a b c d e) 1 3 ’x)

→
(cons ’a

 (replace-range ’(b c d e) 0 2 ’x))

26

Designing Replacement

(replace-range ’(a b c d e) 1 3 ’x)

"should be"

’(a x x x e)

(replace-range ’(a b c d e) 1 3 ’x)

→
(cons ’a

 (replace-range ’(b c d e) 0 2 ’x))

→
(cons ’a

 (cons ’x

 (replace-range ’(c d e) -1 1 ’x)))

27

Designing Replacement

(replace-range ’(a b c d e) 1 3 ’x)

"should be"

’(a x x x e)

→ →
(cons ’a

 (cons ’x

 ...

 (replace-range ’(e) -3 -1 ’x)))

→
(cons ’a

 (cons ’e

 (replace-range empty -4 -2 ’x)))

28

Implementing Replacement

(define (replace-range l s e v)

 (cond

 [(empty? l) empty]

 [else (cons (cond

 [(and (< s 1) (> e -1)) v]

 [else (first l)])

 (replace-range (rest l)

 (sub1 s)

 (sub1 e)

 v))]))

29

Designing Generative Recursion

Finding the recursive sub-problem is the key

Think first, write code second

Writing down example steps can help

30

