
Symbols

Our favorite list-of-sym program:

; eat-apples : list-of-sym -> list-of-sym

(define (eat-apples l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define ate-rest (eat-apples (rest l)))]

 (cond

 [(symbol=? (first l) ’apple) ate-rest]

 [else (cons (first l) ate-rest)]))]))

How about eat-bananas?

How about eat-non-apples?

1

Symbols

Our favorite list-of-sym program:

; eat-apples : list-of-sym -> list-of-sym

(define (eat-apples l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define ate-rest (eat-apples (rest l)))]

 (cond

 [(symbol=? (first l) ’apple) ate-rest]

 [else (cons (first l) ate-rest)]))]))

How about eat-bananas?

How about eat-non-apples?

We know where this leads...

2

Filtering Symbols

;

;

filter-syms : (sym -> bool) list-of-sym

-> list-of-sym

(define (filter-syms PRED l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define r

 (filter-syms PRED (rest l)))]

 (cond

 [(PRED (first l))

 (cons (first l) r)]

 [else r]))]))

3

Filtering Symbols

;

;

filter-syms : (sym -> bool) list-of-sym

-> list-of-sym

(define (filter-syms PRED l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define r

 (filter-syms PRED (rest l)))]

 (cond

 [(PRED (first l))

 (cons (first l) r)]

 [else r]))]))

This looks really familiar

4

Last Time: Filtering Numbers

;

;

filter-nums : (num -> bool) list-of-num

-> list-of-num

(define (filter-nums PRED l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define r

 (filter-nums PRED (rest l)))]

 (cond

 [(PRED (first l))

 (cons (first l) r)]

 [else r]))]))

5

Last Time: Filtering Numbers

;

;

filter-nums : (num -> bool) list-of-num

-> list-of-num

(define (filter-nums PRED l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define r

 (filter-nums PRED (rest l)))]

 (cond

 [(PRED (first l))

 (cons (first l) r)]

 [else r]))]))

How do we avoid cut and paste?

6

Filtering Lists

We know this function will work for both number and symbol lists:

; filter : ...

(define (filter PRED l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 (local [(define r

 (filter PRED (rest l)))]

 (cond

 [(PRED (first l))

 (cons (first l) r)]

 [else r]))]))

But what is its contract?

7

The Contract of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym

-> list-of-num-OR-list-of-sym

; A num-OR-sym is either

; - num

; - sym

; A list-of-num-OR-list-of-sym is either

; - list-of-num

; - list-of-sym

8

The Contract of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym

-> list-of-num-OR-list-of-sym

This contract is too weak to define eat-apples

; eat-apples : list-of-sym -> list-of-sym

(define (eat-apples l)

 (filter not-apple? l))

; not-apple? : sym -> bool

(define (not-apple? s)

 (not (symbol=? s ’apple)))

eat-apples must return a list-of-sym, but by its contract, filter
might return a list-of-num

9

The Contract of Filter

How about this?

(num-OR-sym -> bool) list-of-num-OR-list-of-sym

-> list-of-num-OR-list-of-sym

This contract is too weak to define eat-apples

; eat-apples : list-of-sym -> list-of-sym

(define (eat-apples l)

 (filter not-apple? l))

; not-apple? : sym -> bool

(define (not-apple? s)

 (not (symbol=? s ’apple)))

not-apple? only works on symbols, but by its contract filter might
give it a num

10

The Contract of Filter

The reason filter works is that if we give it a list-of-sym, then it
returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with symbols
only

11

The Contract of Filter

The reason filter works is that if we give it a list-of-sym, then it
returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with symbols
only

A better contract:

filter :

((num -> bool) list-of-num

 -> list-of-num)

OR

((sym -> bool) list-of-sym

 -> list-of-sym)

12

The Contract of Filter

The reason filter works is that if we give it a list-of-sym, then it
returns a list-of-sym

Also, if we give filter a list-of-sym, then it calls PRED with symbols
only

A better contract:

filter :

((num -> bool) list-of-num

 -> list-of-num)

OR

((sym -> bool) list-of-sym

 -> list-of-sym)

But what about a list of images, posns, or snakes?

13

The True Contract of Filter

The real contract is

filter : ((X -> bool) list-of-X -> list-of-X)

where X stands for any type

The caller of filter gets to pick a type for X

All Xs in the contract must be replaced with the same type

14

The True Contract of Filter

The real contract is

filter : ((X -> bool) list-of-X -> list-of-X)

where X stands for any type

The caller of filter gets to pick a type for X

All Xs in the contract must be replaced with the same type

Data definitions need type variables, too:

; A list-of-X is either

; - empty

; - (cons X empty)

15

Using Filter

The filter function is so useful that is’t built in

New solution for HW 4 that works in Intermediate:

(define (eat-apples l)

 (local [(define (not-apple? s)

 (not (symbol=? s ’apple)))]

 (filter not-apple? l)))

16

Looking for Other Built-In Functions

Recall inflate-by-4%:

; inflate-by-4% : list-of-num -> list-of-num

(define (inflate-by-4% l)

 (cond

 [(empty? l) empty]

 [else (cons (* (first l) 1.04)

 (inflate-by-4% (rest l)))]))

Is there a built-in function to help?

17

Looking for Other Built-In Functions

Recall inflate-by-4%:

; inflate-by-4% : list-of-num -> list-of-num

(define (inflate-by-4% l)

 (cond

 [(empty? l) empty]

 [else (cons (* (first l) 1.04)

 (inflate-by-4% (rest l)))]))

Is there a built-in function to help?

Yes: map

18

Using Map

(define (map CONV l)

 (cond

 [(empty? l) empty]

 [else (cons (CONV (first l))

 (map CONV (rest l)))]))

(define (inflate-by-4% l)

 (local [(define (inflate-one n)

 (* n 1.04))]

 (map inflate-one l)))

; negate-colors : list-of-col -> list-of-col

(define (negate-colors l)

 (map negate-color l))

19

The Contract for Map

(define (map CONV l)

 (cond

 [(empty? l) empty]

 [else (cons (CONV (first l))

 (map CONV (rest l)))]))

The l argument must be a list of X

The CONV argument must accept each X

If CONV returns a new X each time, then the contract for map is

map : (X -> X) list-of-X -> list-of-X

20

Posns and Distances

Another function from HW 4:

; distances : list-of-posn -> list-of-num

(define (distances l)

 (cond

 [(empty? l) empty]

 [(cons? l) (cons (distance-to-0 (first l))

 (distances (rest l)))]))

21

Posns and Distances

Another function from HW 4:

; distances : list-of-posn -> list-of-num

(define (distances l)

 (cond

 [(empty? l) empty]

 [(cons? l) (cons (distance-to-0 (first l))

 (distances (rest l)))]))

The distances function looks just like map, except that
distances-to-0 is

posn -> num

not

posn -> posn

22

The True Contract of Map

Despite the contract mismatch, this works!

(define (distances l)

 (map distance-to-0 l))

23

The True Contract of Map

Despite the contract mismatch, this works!

(define (distances l)

 (map distance-to-0 l))

The true contract of map is

map : (X -> Y) list-of-X -> list-of-Y

The caller gets to pick both X and Y independently

24

More Uses of Map

; modernize : list-of-pipe -> list-of-pipe

(define (modernize l)

 ; replaces 4 lines:

 (map modern-pipe l))

; modern-pipe : pipe -> pipe

...

; rob-train : list-of-car -> list-of-car

(define (rob-train l)

 ; replaces 4 lines:

 (map rob-car l))

; rob-car : car -> car

...

25

Folding a List

How about sum?

sum : list-of-num -> num

Doesn’t return a list, so neither filter nor map help

26

Folding a List

How about sum?

sum : list-of-num -> num

Doesn’t return a list, so neither filter nor map help

But recall combine-nums...

;

;

combine-nums : list-of-num num

(num num -> num) -> num

(define (combine-nums l base-n COMB)

 (cond

 [(empty? l) base-n]

 [(cons? l)

 (COMB

 (first l)

 (combine-nums (rest l) base-n COMB))]))

27

The Foldr Function

; foldr : (X Y -> Y) Y list-of-X -> Y

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

28

The Foldr Function

; foldr : (X Y -> Y) Y list-of-X -> Y

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

The sum and product functions become trivial:

(define (sum l) (foldr + 0 l))

(define (product l) (foldr * 1 l))

29

The Foldr Function

; foldr : (X Y -> Y) Y list-of-X -> Y

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

Useful for HW 5:

; total-blue : list-of-col -> num

(define (total-blue l)

 (local [(define (add-blue c n)

 (+ (color-blue c) n))]

 (foldr add-blue 0 l)))

30

The Foldr Function

; foldr : (X Y -> Y) Y list-of-X -> Y

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

In fact,

(define (map f l)

 (local [(define (comb i r)

 (cons (f i) r))]

 (foldr comb empty l)))

31

The Foldr Function

; foldr : (X Y -> Y) Y list-of-X -> Y

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

Yes, filter too:

(define (filter f l)

 (local [(define (check i r)

 (cond

 [(f i) (cons i r)]

 [else r]))]

 (foldr check empty l)))

32

The Source of Foldr

How can foldr be so powerful?

33

The Source of Foldr

Template:

(define (func-for-loX l)

 (cond

 [(empty? l) ...]

 [(cons? l) ... (first l)

 ... (func-for-loX (rest l)) ...]))

Fold:

(define (foldr COMB base l)

 (cond

 [(empty? l) base]

 [(cons? l)

 (COMB (first l)

 (foldr COMB base (rest l)))]))

34

Other Built-In List Functions

More specializations of foldr:

ormap : (X -> bool) list-of-X -> bool

andmap : (X -> bool) list-of-X -> bool

Examples:

; got-milk? : list-of-sym -> bool

(define (got-milk? l)

 (local [(define (is-milk? s)

 (symbol=? s ’milk))]

 (ormap is-milk? s)))

; all-passed? : list-of-grade -> bool

(define (all-passed? l)

 (andmap passing-grade? l))

35

What about Non-Lists?

Since it’s based on the template, the concept of fold is general

; fold-ftn : (sym num sym Z Z -> Z) Z ftn -> Z

(define (fold-ftn COMB base ftn)

 (cond

 [(empty? ftn) base]

 [(child? ftn)

 (COMB (child-name ftn) (child-date ftn) (child-eyes ftn)

 (fold-ftn COMB BASE (child-father ftn))

 (fold-ftn COMB BASE (child-mother ftn)))]))

(define (count-persons ftn)

 (local [(define (add name date color c-f c-m)

 (+ 1 c-f c-m))]

 (fold-ftn add 0 ftn)))

(define (in-family? who ftn)

 (local [(define (here? name date color in-f? in-m?)

 (or (symbol=? name who) in-f? in-m?))]

 (fold-ftn here? false ftn)))

36

