
Ashton Wiersdorf

Monads
All your types are belong to us

What is a monad?

monad = interface

public interface Monad<T> {
 Monad<T> wrap(T value);
 <R> Monad<R> thread(Function<T, Monad<R>? f);
}

class Monad m where
 wrap CD a EF m a
 thread CD m a EF (a EF m b) EF m b

Monad is a sub-interface of
Functor and Applicative

Functor
A box you can map over

class Functor m where
 map CD (Functor f) HI (a EF b) EF f a EF f b

Monad is a sub-interface of
Functor and Applicative

Applicative
A generalization of a function

Something you can apply

class Applicative m where
 wrap CD (Applicative f) HI a EF f a
 apply CD (Applicative f) HI f (a EF b) EF f a EF f b

class Monad m where
 wrap CD a EF m a
 thread CD m a EF (a EF m b) EF m b

Demo: the “Foo” monad that
does nothing

Why do we have monads?

Monads are good
at modeling effects

What are effects?

What are (side-)effects?

Why do we care about effects,
especially in

functional programming?

Monads let us encode effects

Example: encoding exceptions

What is a monad really?

Interfaces vs Typeclasses

• Closed 
Defined with class
definition; can’t be added
later

• Requires instance 
Interfaces require you
have an instance to
invoke a method on

• Open 
Typeclasses can be
implemented anywhere,
anytime.

• Works with return types 
Typeclasses can dispatch
based off of the expected
return type (e.g. pure)

Interfaces Typeclasses

What if my language doesn’t
have typeclasses?

Using monads comfortably

do
 x LM Just 42
 y LM Just (x + 1)
 Just (y * 2)

do
 x LM Just 42
 y LM Just (x + 1)
 Just (y * 2)

Just 42 >?=
 (\x EF (Just (x + 1)) >?=
 (\y EF Just (y * 2)))

Lots of functions beyond the
monad interface

Demo: write a linear
congruence generator

Xn+1 = (aXn + c) mod m

Monad laws

return x >?= f

f x
is the same as

x >?= return

x
is the same as

x >?= f >?= g

is the same as

(x >?= f) >?= g

is the same as

x >?= (\y EF (f y) >?= g)

