Monads

All your types are belong to us

Ashton Wiersdorf

What is a monad?

mohnad = Interface

public interface Monad<T> {
Yonad<T> wrap(l value);
<R> Monad<R> thread(Function<T, Monad<R>> f);

class where
wrap :: a —> m a
thread :: ma —= (a—=mb) = mb

lonad 1s a sub-interface of
runctor and Applicative

Functor

A DOX you can map over

class Functor m where
map :: (functor f) = (@ —=b) = fa—=fb

lonad 1s a sub-interface of
runctor and Applicative

A generalization of a function
Something you can apply

c lass where
wrap . (f) =a —>f a
apply :: (f)=f(@@—=b) =fa—="Fb

class where
wrap :: a —> m a
thread :: ma —= (a—=mb) = mb

Demo: the “Foo” monad that
does nothing

Why do we have monads?

Monads are good
at modeling effects

What are effects?

What are (side-)effects?

Why do we care about effects,
especially In
functional programming?

Monads let us encode effects

Example: encoding exceptions

What is a monad really?

Interfaces vs lypeclasses

Interfaces Typeclasses

e Closed e Open
Defined with class Typeclasses can be
definition; can’t be added Implemented anywhere,
later anytime.

* Requires instance Works with return types
Interfaces require you Typeclasses can dispatch
have an instance to based off of the expected

invoke a method on return type (e.g. pure)

What if my language doesn't
have typeclasses?

Using monads comfortably

X <

42
(x + 1)
(y x 2)

do
X
<« Just 4/

i

Just 472 >

(
e Qust e 10
Just (y * 2)))

Lots of functions beyond the
monad interface

Demo: write a linear
congruence generator

X,.1=(@X, +c) mod m

n

Monad laws

X >= f

IS the same as
T X

X >>=

IS the same as

X

X >= 1T >>= g
IS the same as
(x >=F) >»>=¢g
IS the same as

x >= (\y = (f y) >= g)

