Explicit Algorithms for Probabilistic Model Checking

Dottorando
Igor Melatti

Tutore
Prof. Benedetto Intrigila
Two explicitalgorithms for probabilistic model checking are proposed.

- Formal description
- Proof of correctness
- Implementation (FHP-Mur

- Experimental results
- Comparison with state-of-the-art algorithms (PRISM)
- Verification of a “real-world” system

Formal analysis of the proposed Markov Chain description language
• Two explicit algorithms for probabilistic model checking are proposed
Two explicit algorithms for probabilistic model checking are proposed

- Formal description
- Proof of correctness
- Implementation (FHP-Murφ)
Two explicit algorithms for probabilistic model checking are proposed

- Formal description
- Proof of correctness
- Implementation (FHP-Murϕ)
- Experimental results
 - Comparison with state-of-the-art algorithms (PRISM)
 - Verification of a “real-world” system
Two explicit algorithms for probabilistic model checking are proposed

- Formal description
- Proof of correctness
- Implementation (FHP-Murφ)
- Experimental results
 - Comparison with state-of-the-art algorithms (PRISM)
 - Verification of a “real-world” system

Formal analysis of the proposed Markov Chain description language
Probabilistic Model Checking

Given the description of a Markov Chain, it verifies a PCTL property:

- **PCTL**: Probabilistic CTL

\[
\begin{aligned}
\exists \mathbf{t} U (\mathbf{t} : \mathbf{t} U 1) &> 0 \\
BPCTL: Bounded PCTL &\subset PCTL \\
\exists \mathbf{t} U k_1 (\mathbf{t} : \mathbf{t} U k_2) &> 0 \\
\end{aligned}
\]
• Markov Chain analysis
• Markov Chain analysis

• Given the description of a Markov Chain, it verifies a PCTL property
• Markov Chain analysis

• Given the description of a Markov Chain, it verifies a PCTL property

• PCTL: Probabilistic CTL

 \[- [tt \ U (\neg \phi \land \neg [tt \ U \phi]_{\geq 1})]_{\leq 0} \]
Markov Chain analysis

Given the description of a Markov Chain, it verifies a PCTL property

PCTL: Probabilistic CTL

\[[tt \ U (\neg \phi \land \neg [tt \ U \phi]_{\geq 1})] \leq 0 \]

BPCTL: Bounded PCTL

- Proper subset of PCTL
- All Until (U) must be bounded

\[[tt \ U^{\leq k_1} (\neg \phi \land \neg [tt \ U^{\leq k_2} \phi]_{\geq 1})] \leq 0 \]

\[[tt \ U^{\leq k_1} (\phi_{\text{und}} \land \neg [tt \ U^{\leq k_2} \neg \phi_{\text{err}}]_{\geq 1})] \leq 0 \]
• FiniteHorizonProbabilistic-Murφ
• Finite Horizon Probabilistic-Murφ

• Explicit probabilistic model checker
- Finite Horizon Probabilistic-Murφ
- Explicit probabilistic model checker
 - explicit verification often outperforms symbolic verification in non-probabilistic model checking
• Finite Horizon Probabilistic-Murφ

• Explicit probabilistic model checker
 – explicit verification often outperforms symbolic verification in non-probabilistic model checking
 – we will show that this holds also for probabilistic model checking
• FiniteHorizonProbabilistic-\textit{Mur}φ

• Explicit probabilistic model checker

 – explicit verification often \textit{outperforms} symbolic verification in non-probabilistic model checking

 – we will show that this holds also for probabilistic model checking

• Murφ modified in the input language and in the verification algorithm
• Finite Horizon Probabilistic-Murφ

• Explicit probabilistic model checker
 – explicit verification often outperforms symbolic verification in non-probabilistic model checking
 – we will show that this holds also for probabilistic model checking

• Murφ modified in the input language and in the verification algorithm

• Two explicit algorithms developed
 – BF visit: only for finite horizon safety properties
 * Able to compute error probabilities
 – DF visit: all BPCTL formulas
• We want to verify if $s_0 \models [tt \ U^{\leq 2} \ \phi]_{\geq 0.5}$

• ϕ holds in s_1, s_4, s_7

• The searched probability is: 0
We want to verify if $s_0 \models [tt \ U^{\leq 2} \ \phi]_{\geq 0.5}$

- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} \times 1$
- We want to verify if $s_0 \models [tt \ U \leq 2 \ \phi] \geq 0.5$.
- ϕ holds in s_1, s_4, s_7.
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \ldots$
We want to verify if $s_0 \models [tt \ U^{\leq 2} \ \phi]_{\geq 0.5}$.

ϕ holds in s_1, s_4, s_7.

The searched probability is: $\frac{1}{3} + \frac{1}{3} \times (\frac{1}{2} \times 0 + \ldots)$.
- We want to verify if $s_0 \models [tt \ U^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \left(\frac{1}{2} \times 0 + \frac{1}{2} \times 1 \right)$
We want to verify if $s_0 \models [tt \cup^{\leq 2} \phi]_{\geq 0.5}$.

- ϕ holds in s_1, s_4, s_7

- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \ldots$
We want to verify if $s_0 \models [tt \ U^{\leq 2} \ \phi]_{\geq 0.5}$.

- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0$
We want to verify if $s_0 \models [tt \ U^{\leq 2} \phi]_{\geq 0.5}$.

- ϕ holds in s_1, s_4, s_7.

- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0$.

- Finally, we have $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{2} \geq 0.5$, so the property is verified.
We want to verify if \(s_0 \models F \), being
\[
F \equiv [\Phi \ U^{\leq k} \Psi]_{\leq 0.5}
\]

The cache stores 4-tuples \(\{s, F, h, p\} \)

- \(p \) is the probability of \(\Phi \ U^{\leq h} \Psi \)
When the DF visit of s_3 is completed, $\{s_3, F, k - 3, p_3\}$ is inserted in the cache

- p_3 is the probability value computed by the DF on s_3
- k is decremented of 3 because s_3 is reached in 3 steps from s_0
When the DF visit of s_3 is completed, $\{s_3, F, k - 3, \rho_3\}$ is inserted in the cache

- ρ_3 is the probability value computed by the DF on s_3
- k is decremented of 3 because s_3 is reached in 3 steps from s_0

Analogously, $\{s_2, F, k - 2, \rho_2\}$ is inserted in the cache
In this way, the DF visit of s_4 can directly compute $p_4 = p_3 \times 1$.

- p_3 is not computed, but it is found on the cache.

Then, $\{s_4, F, k - 2, p_4\}$ is inserted in the cache.
• Analogously, when the DF visit of s_5 starts, the nested DF visit of s_4 is skipped
 – p_4 is not computed, but it is found on the cache

• The result of the DF visit of s_6 will be multiplied by $\frac{1}{2}$ and then added to $\frac{1}{2} \times p_4$
Experimental results were carries out on two kind of systems:
Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols
Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
Experimental results were carried out on two kinds of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better.
- If they are modified in order to verify *quality-of-service* properties, FHP-Murφ works better.
Experimental Results

Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Murφ works better

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand
Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Mur\(\varphi\) works better

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand

- Probabilistic Safety Verification
Experimental results were carried out on two kinds of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better.
- If they are modified in order to verify *quality-of-service* properties, FHP-Murφ works better.

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand.

- Probabilistic Safety Verification
- Probabilistic Robustness Verification
Experimental Results: PZ and LR Protocols

<table>
<thead>
<tr>
<th>NPHIL</th>
<th>MAX_WAIT</th>
<th>Result</th>
<th>Murϕ Mem (MB)</th>
<th>PRISM Mem (MB)</th>
<th>Murϕ Time (s)</th>
<th>PRISM Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Result</td>
<td>Murϕ Mem (MB)</td>
<td>PRISM Mem (MB)</td>
<td>Murϕ Time (s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Modified Pnueli-Zuck** | | | | \begin{align}
\text{Modified Lehmann-Rabin} & \\
3 & 4 & true & 5.0e+2 & 7.014830e+01 & 5.00634000e+03 & 5.359870e+02 \\
4 & 3 & true & 5.0e+2 & N/A & 1.11480680e+05 & N/A \\
& & & & & & |
| | | | & & & & |

Property verified:

- When an undesired state s is reached, then the system almost always reaches, from s and in a few steps, a non-error state.

- There is a low probability that we reach in k_1 steps an undesired state s, and there is not a high probability of reaching, from s and in $k_2 = \frac{k_1}{10}$ steps, a non-error state.

- $[tt U^{\leq k_1} (\phi_{und} \land \neg [tt U^{\leq k_2} \neg \phi_{err}] \geq 1)] \leq 0$.

NPHIL, MAX_WAIT: protocol parameters
ICARO: 2MWElectric Co-generative Power Plant, in operation at the ENA Research Center of Casaccia (Italy)

The most important module is the Turbogas Control System (TCS) — it is also the most complex one.

It is a hybrid system: it has both continuous (e.g., power and user demand) and discrete variables (execution modality) — this kind of systems are hard to analyze with OBDD-based model checkers.

Thus, there is no hope to verify TCS with PRISM.
ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)
ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)

The most important module is the Turbogas Control System (TCS)

- It is also the most complex one
ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)

The most important module is the Turbogas Control System (TCS)
 - It is also the most complex one

It is an hybrid system: it has both continuous (e.g., power and user demand) and discrete variables (execution modality)
 - This kind of systems are hard to analyze with OBDD-based model checkers
 - Thus, there is no hope to verify TCS with PRISM
A Turbogas Control System

- Electric Power Generated by the Alternator
- Turbine Rotation Speed
- User Demand (u)
- Fuel Valve Opening
- Compressor Pression
- Exhaust Smokes Temperature

TCS

TCS is an electronic circuit, its detail are known.

The turbogas is modeled by a set of ODEs.

The user demand is modeled as a nondeterministic disturbance. Its variation is bounded by a verification parameter (MAX_DU).
TCS is an electronic circuit, its detail are known
- TCS is an electronic circuit, its detail are known
- The turbogas is modeled by a set of ODEs
- TCS is an electronic circuit, its detail are known
- The turbogas is modeled by a set of ODEs
- The user demand is modeled as a nondeterministic disturbance
 - Its variation is bounded by a verification parameter (MAX_DU)
To automatically verify TCS, we added finite precision real numbers to Mur''.

Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Mur'' input language.

The property to be verified is that the main TCS parameters are maintained close to their setpoints values by the controller – this has to hold for every value of the user demand.

As a result, if the user demand varies too much rapidly (i.e. MAX\textsubscript{D\textsubscript{U}} is too high), the controller fails.
To automatically verify TCS, we added finite precision real numbers to Mur.$

ϕ

• To automatically verify TCS, we added finite precision real numbers to Murφ

• Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Murφ input language
• To automatically verify TCS, we added finite precision real numbers to Murφ.

• Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Murφ input language.

• The property to be verified is that the main TCS parameters are maintained close to their setpoints values by the controller.
 – This has to hold for every value of the user demand.
• To automatically verify TCS, we added finite precision real numbers to $\text{Mur} \varphi$

• Then, the ODEs are discretized with a sampling step of 10 ms and translated in the $\text{Mur} \varphi$ input language

• The property to be verified is that the main TCS parameters are maintained close to their setpoints values by the controller
 – This has to hold for every value of the user demand

• As a result, if the user demand varies too much rapidly (i.e. $\text{MAX}_D \text{U}$ is too high), the controller fails
The TCS and Turbogas behaviors, obviously, remain deterministic. On the other hand, the user demand now has a probabilistic distribution.

Let

\[p(u,i) = \begin{cases}
0 & : i = 1 \\
0 & : i = +1 \\
\left(u - M^2 \right) / u & : i = 0
\end{cases} \]

Then

\[u(t+1) = \begin{cases}
\max(u(t), 0) & \text{with prob. } p(u(t), 1) \\
\min(u(t) + M^2, 0) & \text{with prob. } p(u(t), 0)
\end{cases} \]
• The TCS and Turbogas behaviors, obviously, remain deterministic
● The TCS and Turbogas behaviors, obviously, remain deterministic

● On the other hand, the user demand now have a probabilistic distribution
• The TCS and Turbogas behaviors, obviously, remain deterministic

• On the other hand, the user demand now have a probabilistic distribution

 Let

 \[p(u, i) = \begin{cases}
 0.4 + \beta \frac{(u - \frac{M}{2})|u - \frac{M}{2}|}{M^2} & \text{if } i = -1 \\
 0.2 & \text{if } i = 0 \\
 0.4 + \beta \frac{(\frac{M}{2} - u)|u - \frac{M}{2}|}{M^2} & \text{if } i = +1
 \end{cases} \]
- The TCS and Turbogas behaviors, obviously, remain deterministic
- On the other hand, the user demand now have a probabilistic distribution
 - Let
 \[
 p(u, i) = \begin{cases}
 0.4 + \beta \frac{(u - \frac{M}{2})|u - \frac{M}{2}|}{M^2} & \text{if } i = -1 \\
 0.2 & \text{if } i = 0 \\
 0.4 + \beta \frac{\left(\frac{M}{2} - u\right)|u - \frac{M}{2}|}{M^2} & \text{if } i = +1
 \end{cases}
 \]
 - Then
 \[
 u(t + 1) = \begin{cases}
 \max(u(t) - \alpha, 0) & \text{with prob. } p(u(t), -1) \\
 u(t) & \text{with prob. } p(u(t), 0) \\
 \min(u(t) + \alpha, M) & \text{with prob. } p(u(t), +1)
 \end{cases}
 \]
• We compute which is the error probability in at most k steps
 – finite horizon safety property
• We compute which is the error probability in at most k steps
 – finite horizon safety property

• MAX_D_U has a value that force the non-probabilistic verification to fail
• We compute which is the error probability in at most k steps
 – finite horizon safety property

• MAX_D_U has a value that force the non-probabilistic verification to fail

<table>
<thead>
<tr>
<th>MAX_D_U</th>
<th>Reachable States</th>
<th>Finite Horizon</th>
<th>CPU Time</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3018970</td>
<td>1600</td>
<td>68562.570</td>
<td>7.373291768e-05</td>
</tr>
<tr>
<td>35</td>
<td>2226036</td>
<td>1400</td>
<td>50263.020</td>
<td>1.076644427e-04</td>
</tr>
<tr>
<td>45</td>
<td>1834684</td>
<td>1300</td>
<td>41403.150</td>
<td>9.957147381e-05</td>
</tr>
<tr>
<td>50</td>
<td>83189</td>
<td>900</td>
<td>2212.360</td>
<td>3.984375e-03</td>
</tr>
</tbody>
</table>
• Verification of a robustness property
• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

• A state is *undesired* if the critical parameters are near to their critical values
 – if the system remains too much time in an undesired state, it will crash
• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

• A state is \textit{undesired} if the critical parameters are near to their critical values
 – if the system remains too much time in an undesired state, it will crash

• More formally: there is a low probability of reaching an undesired state \(s \), such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from \(s \)
• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

• A state is *undesired* if the critical parameters are near to their critical values – if the system remains too much time in an undesired state, it will crash

• More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s

• The formula is $[tt \ U^{\leq k_1} (\neg \phi_{und} \land \neg[tt \ U^{\leq k_2} \phi_{und}]_{\geq 1})]_{\leq 0}$
• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

• A state is *undesired* if the critical parameters are near to their critical values
 – if the system remains too much time in an undesired state, it will crash

• More formally: there is a low probability of reaching an undesired state \(s \), such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from \(s \)

• The formula is \([tt \ U^{\leq k_1} (\neg \phi_{und} \land \neg [tt \ U^{\leq k_2} \phi_{und}]_{\geq 1}])]_{\leq 0}\)

• \(k_1 \) is sufficient to reach an undesired state
Verification of a robustness property

Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

A state is *undesired* if the critical parameters are near to their critical values

– if the system remains too much time in an undesired state, it will crash

More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s

The formula is $[tt \ U^{\leq k_1} (\neg \phi_{und} \land \neg [tt \ U^{\leq k_2} \phi_{und}]_{\geq 1})]_{\leq 0}$

k_1 is sufficient to reach an undesired state

$k_2 = \frac{k_1}{100}$
Results on a machine with 2 processors (both INTEL Pentium III 500Mhz) and 2GB of RAM.

Mur\(\varphi\) options used: \(-m500\) (use 500 MB of RAM)

<table>
<thead>
<tr>
<th>MAX_D_U</th>
<th>Visited States</th>
<th>(k_1)</th>
<th>CPU Time (s)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1.159160e+05</td>
<td>800</td>
<td>3.702400e+03</td>
<td>4.104681e-03</td>
</tr>
<tr>
<td>45</td>
<td>4.098000e+04</td>
<td>700</td>
<td>1.313900e+03</td>
<td>1.792883e-02</td>
</tr>
<tr>
<td>50</td>
<td>4.067700e+04</td>
<td>700</td>
<td>1.307850e+03</td>
<td>3.825000e-02</td>
</tr>
</tbody>
</table>
More features for FHP-Mur$^\varphi$ and then comparison with PRISM
More features for FHP-Murφ and then comparison with PRISM

- Continuous Markov Chains (with CSL logic)
 - Approximable to Discrete Time Markov Chain with an exponential distribution
 - The smaller the sampling step
 * the lowest the approximation error
 * the higher the execution time