Generalized Swept Mid-structure for Polygonal Models

Tobias Martin1, Guoning Chen2, Suraj Musuvathy1, Elaine Cohen1 and Charles Hansen1,2

1School of Computing, University of Utah, USA
2SCI, University of Utah, USA

Abstract

We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

1. Introduction

Many applications in the field of computer graphics and visualization require interior mid-structures of three dimensional objects that represent their form or shape with lower dimensional entities. One dimensional curve skeletons [ATC+08], and the 3D medial axis [SP08], are such examples that have been used for mesh generation, animation, registration, and segmentation applications. Curve skeletons faithfully represent an object in tubular regions. For more general geometry, a medial axis is preferred since it consists of surface sheets [SP08] and they better capture the shape than curve skeletons.

However, a medial axis is very sensitive to small changes in shape and it produces nearly degenerate polygons in tubular regions. Our quest for a new type of mid-structure is moti-
The contributions of this paper include: 1. Introduction of the GSM, a novel mid-structure based on sweeps of mid-structures of non-planar level sets, and a pipeline to compute it (Section 3). 2. A novel planar medial axis computation algorithm, from which the mid-structure is computed (Section 5).
3. A matching algorithm for consecutive mid-structures to create a GSM with consistent topology (Section 6).

2. Related Work

There have been vast research on mid-structures related to the proposed GSM. 1D curve skeletons and 3D medial axes are special types of mid-structures. Algorithms for computing them are reviewed in the surveys [SP08,BAB08].

In a similar fashion to the GSM construction, level set diagrams [LV99] are constructed by connecting barycenters of isocontours of a scalar function defined on a surface. Curve skeletons are extracted by improving Reeb graphs of harmonic functions in [HXS09]. Mesh contraction using constrained Laplacian smoothing is used to construct curve skeletons in [ATC08].

Exact arithmetic is used to compute medial axes of polyhedra in [CKM04]. Approximations of the medial axis of polygonal meshes are computed using distance fields in [FLM03] and Voronoi diagrams in [SF05]. Algorithms for computing medial axes from point-sampled surfaces based on Voronoi graphs are [ACK01,DG03,CL04]. The discrete scale axis [MGP10] is a variant of the medial axis that computes connected polygons of medial surfaces corresponding to dominant shape features at a user specified simplification scale.

Voronoi based medial axis computation algorithms are computationally efficient. However, since there is no sheet topology information, there is no explicit relationship between medial axis regions and object shape features. Furthermore, in contrast to a GSM, global methods do not suggest a strategy to parameterize the resulting medial axis, at least in part because sheet structure is undetermined. With an explicit sweeping direction, the GSM identifies sheets, and has a natural parameterization that can be used for later applications as discussed in Section 8. Figure 3 shows a comparison between the tight co-cone and GSM.

A hybrid structure is derived via topological analysis of the 3D medial axis of an object in [GDB06] and is used to annotate tubular and more general regions of the object. However, the derived structure is susceptible to problems associated with medial axis computation. Thinning algorithms such as those presented in [JBC07] are used to derive skeletons of objects represented as sub-regions of volumetric grid data. The derived skeletons consist of discrete voxels without topology. The topology must be inferred in a post-process, and is susceptible to errors stemming from sampling density and object orientation within the grid. Our proposed approach automatically generates curve and surface sheet skeletons in appropriate areas with consistent topology at the transition regions and sheet topology in surface regions.

3. The GSM

The generalized swept mid-structure (GSM) is a mid-structure obtained by joining mid-structures of nonplanar slices of a polygonal representation of a closed 3D object. The GSM, a connected structure lying in the interior of the object, is a generalization of the swept medial axis as proposed in [Dam08]. The GSM consists of triangulated surfaces and curves represented as polylines. The GSM is invariant under rigid body transformations and scaling.

3.1. Computational Pipeline Overview

This section provides an overview of our methodology to construct a mid-structure for a closed surface triangle mesh. Let \((T, \eta_T, C_T)\) define the bounding triangle mesh, where \(T\) is the set of triangles, \(\eta_T\) is the set of vertices, and \(C_T\) is the connectivity of the mesh. Based on \(T\), a volumetric representation \(\Omega \subset \mathbb{R}^3\) is constructed, represented as an unstructured tetrahedral mesh, denoted by \((\mathcal{H}, \eta_H, C_H)\), where \(\mathcal{H} \subset \mathbb{R}^3\) is the set of tetrahedra, \(\eta_H\) the set of vertices defining the tetrahedra, and \(C_H\) the connectivity of the tetrahedral mesh. \(\mathcal{H}\) is constructed using a tetrahedral meshing method, e.g. [Si05], and has \(T\) as its boundary.

The following steps describe the construction of GSM from the input shape \(T\), as shown in Figure 1.

1. Compute a harmonic function \(u(x,y,z)\) on \(\mathcal{H}\) (Section 4).
2. Decompose \(\mathcal{H}\) into a sequence of non-planar slices \(L_i\) (\(L_i\) are level sets of \(u(x,y,z)\)) (Section 4.1).
3. Extract a simplified 2D mid-structure for each \(L_i\) (Section 5).
4. Starting from the first slice, iteratively construct the mid-structure by matching the mid-structures of two adjacent slices until the last slice is reached (Section 6).

4. Harmonic Functions

The GSM framework can be used if the dataset already contains a slicing strategy (e.g. segmented data from a volumetric scan). In this case we proceed to step 2 in the GSM construction pipeline. Otherwise, we compute a harmonic function.

A harmonic function is a function \(u \in C^2(\mathcal{H}), u : \mathcal{H} \rightarrow \mathbb{R}\), satisfying Laplace’s equation,

\[
\nabla^2 u = 0,
\]

where \(\nabla^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\). \(u\) satisfies the maximum principle, i.e. it does not exhibit any local minima and maxima, and therefore can be used to define a sweeping strategy to decompose \(\mathcal{H}\) into an ordered set of slices. Harmonic functions have been used earlier in the domain of meshing and volumetric parameterization [DKG05, MCK08] or for skeleton extraction [HXS09].

Galerkin’s formulation [Hug00] is used to discretize Equation 1. \(\eta_H\) can be decomposed into the set \(\eta_B\) for which the solution is known (Dirichlet boundary) and the set \(\eta_I\), for which a solution is sought. A solution has the form...
While \(u(x, y, z) = \sum_{k \in V} a_k \phi_k(x, y, z) \), where \(\phi_k(x, y, z) \) are linear hat functions associated with vertex \(v_k \in V \). The gradient field \(\nabla u \) over \(H \) is therefore piecewise constant.

In our framework, many methods can be used to create the slicing strategy, such as [DBG06], but we chose approaches similar to [NGH04, DKG05, HXS09], where the user determines the points in the set \(V_h \). The user therefore has control over \(u(x, y, z) \) and the resulting sweeping strategy. Figure 4 illustrates two harmonic functions on the genus-1 kitten model. While \(u(x, y, z) \) in Figure 4a has two saddles, \(u(x, y, z) \) in Figure 4b follows a torus-like sweep. Both are valid. Figure 4 also shows the corresponding GSMs for these two distinct choices.

4.1. Decomposition of \(H \)

Given the harmonic function \(u(x, y, z) \), a slice \(L_i \) (Figure 1b), at value \(u_i \in \mathbb{R} \) is the level set satisfying \(u(x, y, z) = u_i \). \(L_i \) is extracted using marching tetrahedra [CFM*94]. Depending on the choice of \(V_h \) and resulting saddle points [NGH04], \(L_i \) can consist of multiple disjoint non-planar 2-manifolds represented with triangle mesh.

Once the user specifies the harmonic function \(u(x, y, z) \), which determines the cutting strategy, the object is decomposed into a set of slices \(L_i \) such that every triangle in \(T \) is intersected by at least one slice which captures the global features in \(T \). For each vertex \(p_i^k \) of \(L_i \), a path can be constructed from \(p_i^k \) to a new point \(p_j^k \), the projection of \(p_i^k \) on level set \(L_j \), by following \(\nabla u(x, y, z) \). Let \(l_{i,j}^k \) be the length of this path.

Then, given this set of slices, let \(\varepsilon_i = \max_{j \neq k} \{ l_{i,j+1} \} \) be the distance between slice \(i \) and \(i+1 \). Due to distortions of \(u(x, y, z) \) and triangulation of \(T \), \(\varepsilon_i \) varies across the slices. To achieve a cutting of the object such that \(\varepsilon_i \) varies slowly, the input surface is remeshed into a triangle mesh where triangles have approximately the same size and shape. These parameters can be chosen by the user to maintain a specific feature size. Such a triangulation can be computed using, for instance, Afront [SSS06]. Section 7 presents an example that shows GSMs of different versions of an input object.

Each component of \(L_i \) is flattened using the CGAL [cgal] implementation of the LSCM [LPRM02]. The boundary of the flattened \(L_i \) is approximated with a periodic B-spline curve using the method proposed in [MCK08]. A medial axis with topological structure is computed for the planar region enclosed by this curve, using a novel technique presented in Section 5. This medial axis is simplified, yielding the mid-structure which is mapped onto the respective component of \(L_i \), and incrementally matched with that of an adjacent slice to construct the GSM (Section 6).

5. Computing Mid-structure of Slices

In order to construct reliable GSMs, we require mid-structures to consist of smooth curves and smoothly changing geometry and topology between adjacent slices. Several techniques for computing the medial axis of a planar region from piecewise smooth [RG03, AAA09] or discrete boundary representations [SP08, BAB08] exist. However, such approaches introduce artifacts, due to the nature of the representation, and human interaction is required to remove them to compute a suitable mid-structure. We present a new method to automatically and accurately compute the medial axis with topology of the parametric B-spline curve that approximates the boundary of the flattened level set \(L_i \). A suitable mid-structure is then computed by simplifying the medial axis based on its topology.

The medial axis of a planar region enclosed by a bounding curve \(\gamma \) is the locus of centers of maximally inscribed circles that are tangent to two points on \(\gamma \), with the limit points of the locus [GK03]. The contact points of each maximal circle with the boundary curve are called foot points for the corresponding medial axis point. A limit point is either an end point or a junction point at which the maximally inscribed circle has one or three foot points, respectively. Three medial axis segments meet at a junction point. Figure 5 shows an example of the medial axis of a planar region computed using our proposed approach. Our approach also computes foot points and distance to the boundary for each medial axis point, thereby giving the complete medial axis transform. Foot points, end points and junction points are not explicitly produced in previous medial axis computation algorithms. These points are necessary for the matching stage proposed in Section 6.

5.1. Algorithm Overview

The proposed approach is based on the eikonal flow (also called grassfire flow) of the boundary curve toward the interior. Let \(B \) be the boundary of a region in \(\mathbb{R}^2 \) represented by a parametric B-spline curve \(\gamma(u) \). The inward directed curve normal is defined as \(N(u, v) = [0 \ 0 \ 1]^T \times \frac{\partial \gamma}{\partial u} \), which avoids flips of normal vector directions at inflection points. The offset curve resulting from the eikonal flow at a time \(t \) is given by \(C(u, t) = \gamma(u) + t \frac{N(u, t)}{\|N(u, t)\|} \), \(t \geq 0 \). As the curve evolves under the eikonal flow, different regions start intersecting with each other at distinct points, and the intersection points evolve as \(t \) increases. The trace of each such point is the medial axis. Note that only the first intersection points of any two

Figure 4: Two different harmonic functions on kitten model result in different GSMs.
boundary points belong to the medial axis. The eikonal flow results in the occurrence of two kinds of transition points: 1) source points, at which medial curves are created, and 2) sink points, at which medial curves are annihilated. The proposed approach presents techniques to accurately compute all transition points using properties of the B-spline representation. Medial curves are then computed using a numerical tracing algorithm. This topology structure and connectivity is required in the mid-structure matching stage, to establish consistent topology for the GSM.

5.2. Transition Points

We present geometric criteria for computing transition points, where the resulting nonlinear B-spline equations are solved using state-of-the-art methods [EK01, EG08] that guarantee robust computation of all solutions where accuracy is chosen to be 1/10 of the current slicing distance ε, using their implementation in the IRIT library [Elb08]. Let γ_i(u_i), i = 1, 2, 3 be three representations of the boundary curve to denote different regions, and let N_i denote the unnormalized normals of γ_i respectively that are directed toward the interior of the region of interest. End points are source points of the medial axis corresponding to curvature maximum points of γ(u). The parameter values of critical points of curvature (κ(u)) are computed by solving Equation 2. End points are those solutions that correspond to maximum values of κ, and are computed at offset 2ε.

\[\frac{\partial \kappa(u)}{\partial u} = \frac{\partial}{\partial u} \left(\frac{\parallel \gamma \times \gamma \parallel}{\parallel \gamma \parallel} \right) = 0 \] (2)

Distance critical points are points where the distance between two points on γ corresponding to a medial axis point is a critical value. The critical point is a source point when the distance function has a local minimum, and a sink point when the distance function has a local maximum. Define \(D(u_1, u_2) = \parallel \gamma_1 - \gamma_2 \parallel^2 = \langle \gamma_1 - \gamma_2, \gamma_1 - \gamma_2 \rangle \) as the squared distance function between any two points on the curve. The parameter values corresponding to critical points of D are obtained by computing solutions of Equation 3. Distance critical points are given by \(\langle \gamma(u_1) + \gamma(u_2) \rangle / 2 \).

\[\frac{\partial D}{\partial u_i} = \langle \gamma_1 - \gamma_2, \frac{\partial \gamma_i}{\partial u_i} \rangle = 0, \quad i = 1, 2 \] (3)

A junction point is either a sink point for three curves or a sink for two curves and a source for a third one [GK03]. For a point \(P \) in \(\mathbb{R}^2 \) to be a junction point, the following equations must be satisfied.

\[\langle P - \gamma_i, \frac{\partial \gamma_i}{\partial u_i} \rangle = 0, \quad i = 1, 2, 3 \] (4a)

\[\parallel P - \gamma_j \parallel = \parallel P - \gamma_j \parallel, \quad j = 2, 3 \] (4b)

Since \(P = (x, y) \) is unknown, Equations 4(a)-(b) form a system of five equations in five unknowns. This system is simplified in a way similar to that in [EK01]. Let \(P = \gamma_1 + \alpha N_1 \).

\[T_\gamma = \nabla F^{(x)} \times \nabla F^{(y)} \] (7)

Figure 5: Medial axis of a region bounded by a B-spline curve. Along with their maximal circles, end points (E) are shown in orange, junction points (J) in blue, and distance critical points (D) in red. The arrows point to the foot points.

Substitute for \(P \) in \(\parallel P - \gamma_1 \parallel = \parallel P - \gamma_2 \parallel \), to obtain \(\alpha = \frac{-\langle \gamma_1 - \gamma_2, \gamma_1 - \gamma_2 \rangle}{2(\gamma_1 - \gamma_2, N_1)} \). Denote \(\gamma_1 - \gamma_2 \) by \(N_{mi}, i = 2, 3 \). Substituting for \(P \) and \(\alpha \) in Equations 4(a)-(b) and simplifying yields a system of 3 equations in 3 variables. For \(i = 2, 3 \),

\[2(\gamma_{m2} \cdot N_1) \langle \gamma_{m2}, \frac{\partial \gamma_1}{\partial u_i} \rangle - \parallel \gamma_{m2} \parallel^2 \langle N_1, \frac{\partial \gamma_1}{\partial u_i} \rangle = 0 \] (5a)

\[\langle \gamma_{m2}, N_1 \rangle \parallel \gamma_{m3} \parallel^2 - \parallel \gamma_{m2} \parallel^2 \langle N_1, \gamma_{m3} \rangle = 0 \] (5b)

Equation 4(a) for \(i = 1 \) is automatically satisfied after substitutions for \(P \) and \(\alpha \). From the corresponding parameter values and solutions, junction points are computed as offsets at distance given by \(\alpha \parallel N(u_1) \parallel \). Among all solutions of Equations 3 and 5, only those that satisfy the maximality condition are retained. Trivial solutions where \(u_l = u_m, l \neq m \) are ignored.

5.3. Medial Curves

Suppose \(C_i, i = 1, 2 \) are two representations of eikonal offset curves of \(\gamma_i(u_i) \) at time \(t \). Define a mapping \(F : \mathbb{R}^3_{u_1, u_2, t} \rightarrow \mathbb{R}^2 \), where \(\mathbb{R}^3_{u_1, u_2, t} \) is the augmented parameter space consisting of the parametric directions of the two curves and the time domain, as follows

\[F(u_1, u_2, t) = C_1(u_1, t) - C_2(u_2, t), u_1 \neq u_2 \] (6)

The parametric domain, \(\mathcal{I} \), of \(F(u_1, u_2, t) = [0 0]^T \) is the set of all intersection points of the two offset curves over all time values. Away from transition points, \(F \) is a differentiable function, and hence \(\mathcal{I} \) is a well-defined 1-manifold in \(\mathbb{R}^3_{u_1, u_2, t} \). Let \(F^{(x)} \) and \(F^{(y)} \) represent the first and second vector components of \(F \). \(\mathcal{I} \) is an implicit space curve that is the locus of intersection points of the two hypersurfaces \(F^{(x)} = 0 \) and \(F^{(y)} = 0 \). The tangent to the intersection curve \(\mathcal{I} \) is given by

\[T_\mathcal{I} = \nabla F^{(x)} \times \nabla F^{(y)} \] (7)
where $\nabla F^{(i)}$ and $\nabla F^{(b)}$ are the normals to the hypersurfaces. The medial axis curve segments are numerically traced from source (P_{SRC}) to sink points in the augmented parameter space by solving the differential equation (Equation 8).

$$\frac{d\chi}{dt} = T_{L}(\chi), \quad \chi(0) = P_{SRC}, \quad \chi(t) \in \mathbb{R}^{3}$$

Sink points are detected during numerical tracing when they are within a specified distance. This distance is a percentage of the diagonal of bounding box of γ. For the results shown in this paper, a distance tolerance of 1% worked well.

5.4. Medial Axis Simplification

The mid-structure is constructed by simplifying the computed medial axis. Leaf segments are deleted and internal segments are merged. Medial segments incident at distance critical points are merged. These operations are performed when the respective segment length is smaller than the slicing distance (ε). Note that this procedure may result in more than three incident curves at a junction point, but does not add complexity to the matching algorithm presented in the next section.

If all segments of the medial axis are smaller than ε, the medial axis is contracted to the centroid of the region. This situation occurs when the boundary is nearly circular and therefore the medial axis consists of small segments near the center of the region. These contractions result in 1D curve segments in the GSM. We will denote a topological graph of the mid-structure of the level set L_i as $G(N_i, E_i)$, where N_i is the set of the end points and junction points, and E_i is the set of edges that connect these points. These edges correspond to the curved segments in the original mid-structures that are densely sampled for later GSM representation. p_i^j is used to denote the j^{th} node in N_i, and $(p_i^j, p_i^k) \in E_i$ represents the edge between those nodes.

6. Matching Successive 2D Mid-Structure

After computing mid-structures for each level set (Section 5), we next find correspondence between two neighboring 2D mid-structures and construct a surface to connect them. Given the two successive mid-structures represented as two graphs (Section 5), we match the edges of the graphs. A triangulation is used to connect these matching pairs based on the samples along the original mid-structure (see figure below). A number of existing graph matching techniques can be applied to accomplish this step [GT91, SSDZ98, KSK01]. However, these methods typically deal with more general graph matching problems without knowing the relation between the two graphs that are matched. Thus, their algorithms are usually complicated and computationally expensive. In contrast, in the present problem, one graph is evolved from the other through a small change and hence the generic transitions between the two graphs are well-defined [GK03]. Therefore, a simpler matching technique can be devised by finding the correspondences along the section boundary curves from which the mid-structures are computed (Section 5).

6.1. Topological Changes

For smoothly changing geometry of the boundary, there are only two generic transitions of the mid-structures [GK03]:

Leaf creation/annihilation (Type 1) and Flip configuration (Type 2). Type 1 corresponds to the creation (or destruction) of a feature (e.g. a protrusion) on the boundary. To illustrate Type 2, consider the junction points, p_i^j and p_i^k in M_i and p_{i+1}^j and p_{i+1}^k in M_{i+1}, respectively. Each pair is connected by an edge. In the continuous case, edge (p_i^j, p_i^k) will first collapse into a single node before growing to edge (p_{i+1}^j, p_{i+1}^k). However, the discrete cutting will likely not capture the degenerate point as shown in the figure to the right.

During matching, we assume at most one topological change on an edge (including its two end points) of the graph when evolving from one level set to the next. If this assumption is not satisfied, additional level sets between the original pair must be added until it is satisfied. Other cases are investigated in a future work.

6.2. Matching

Let $\{cp_i\}$ be the set of foot points of M_i. We match two graphs M_i and M_{i+1} according to the distance of $\{cp_i\}$ and $\{cp_{i+1}\}$ on ∂L_{i+1}. We first project $\{cp_i\}$ onto ∂L_i as discussed in Section 4.1. On the boundary of the level set L_{i+1}, the distance between any two foot points cp and cp' is defined as the shortest arc-length between them along ∂L_{i+1}, (cp, cp'). Assume that all foot points are sorted along ∂L_{i+1} (either clockwise or counter clockwise). Given a foot point cp_i' of M_i, there are exactly two points cp_{i+1}' and cp_{i+1} from M_{i+1} that enclose cp_i' along the 1D boundary ∂L_{i+1}. Therefore, finding the closest point to a given foot point can be done in constant time. Two end points p_i^j, p_{i+1}^j (Figure 6, bottom left) from the two graphs are called close if their foot points are the closest pair on ∂L_{i+1}. We then pair them in the matching, denoted as $p_i^j \leftrightarrow p_{i+1}^j$. Two junction points p_i^k, p_{i+1}^k (Figure 6, middle left) from the two graphs are called close if the foot points of p_i^k are directly next to the ones of p_{i+1}^k pairwise on ∂L_{i+1} or their leaf nodes are all close to each other.

Given the above distance and similarity metric, our matching
Figure 6: Illustration of matching algorithm. The top row shows two consecutive slices, L_i and L_{i+1} and their mid-structures, M_i and M_{i+1}. The foot points of the end points (orange dots) and junction points (blue dots) are highlighted on the boundaries. Each point in the mid-structure and its foot points are linked through straight lines. The bottom figures illustrates the matching steps 1–4. Note that all the foot points in level L_i have been projected to level L_{i+1}. For illustration purpose, we overlap the mid-structure M_i (skeleton with light colors) with M_{i+1} (skeleton with dark colors).

algorithm can be described as follows (Figure 6). 1. Match two closest end points. 2. Match two closest junction points. 3. Match two edges if their end points are matched pairwise. 4. Handle topological changes and match remaining edges.

Handling topological changes proceeds as follows. 1) for Type 1, a junction point p_{i+1}^{k+1} is introduced (or removed) if a new branch edge $(p_{i+1}^{k+1}, p_{i+1}^{k+1})$ is growing out from (or collapsing onto) an existing edge (p_i^k, p_i^{k+1}) that is split to two edges (p_i^{k+1}, p_i^{k+1}) and (p_i^{k+1}, p_i^{k+1}). We then match $(p_i^k, p_i^{k+1}) \leftrightarrow (p_i^{k+1}, p_i^{k+1}, p_i^{k+1}, p_i^{k+1})$. Note that if the new branch edge is growing from an existing junction point, we do nothing. 2) for Type 2, there are two unmatched junction points for each graph, e.g. p_i^j and p_i^{j+1} at M_i, p_i^{j+1} and p_i^{j+1} at M_{i+1}. They are connected by an edge in their corresponding graph. In the meantime, all their connecting end points are matched pairwise (see the four end points in the illustrative example of Type 2 above). It is this configuration that allows us to identify Type 2 topological change. To handle that, we insert four matching pairs: $p_i^j \leftrightarrow p_i^{j+1}$, $p_i^{j+1} \leftrightarrow p_i^{j+1}$, $p_i^{j+1} \leftrightarrow p_i^j$, and $p_i^{j+1} \leftrightarrow p_i^{j+1}$. Note that if a skeleton graph contains only a single node, everything in the successive graph will be mapped to this node. This guarantees the continuous transition between 1D curve and 2D surface structures of a GSM.

6.3. Handling Bifurcations

The aforementioned matching framework works well for level sets with one connected component. It is not sufficient for the case where the number of connected components of the level set changes at the saddle points of the harmonic function (e.g. the splitting and merging of level sets), for instance, at the basis of the ears of the bunny. We extend the framework to handle the matching at bifurcations as follows.

Let C_i and C_{i+1} be the number of connected components in L_i and L_{i+1}, respectively. Assume $C_i < C_{i+1}$ (i.e. splitting). We project cp_i^j onto ∂L_{i+1} (If $C_i > C_{i+1}$ (i.e. merging), we project cp_i^j onto ∂L_i). Each projected foot point cp_i^j is assigned a component index after projection. All the foot points of one node p_i^j are in the same component after projection because of the properties of the harmonic function. We extract sub-graphs from M_i based on the assigned component indices. These sub-graphs are matched with the corresponding components of M_{i+1} using the same algorithm described in Section 6.2.

Let e_i represent the edge $(p_i^j, p_i^{j+1}) \in E_i$ of M_i. It splits into two edges in M_{i+1}. Assume that p_i^j is matched to p_i^{j+1}. We examine the edges adjacent to p_i^{j+1} in M_{i+1}, and find out the one whose other end node p_i^{j+1} has not been matched and has the smallest Euclidean distance to e_i. We then project p_i^{j+1} onto e_i at p_i^{j+1} and construct a partial matching between (p_i^j, p_i^{j+1}) and (p_i^{j+1}, p_i^{j+1}). We process p_i^{j+1} similarly.

7. Results and Discussion

Figure 7 shows results of our framework for a number of graphics, medical, and CAD models. The iterative construction of the GSM allows us to track topological changes of the mid-structures of level sets along the user desired cutting orientation. Different color sheets in Figure 7 represent the evolution of their individual feature components of the mid-structure (the edges of the simplified medial graph). Figure 8 presents a comparison with 1D curve skeletons [ATC*08] and discrete scale axes [MGP10] for a model with tubular and more general regions (see the middle and right columns). Both, the curve skeletons and discrete scale axes are computed using the programs provided by the authors of those papers. This comparison shows that the hybrid structure of the GSM captures the tubular and more general regions of each object as curve and surface elements, while the other
400, $\varepsilon = [0.006, 0.135]$
350, $\varepsilon = [0.004, 0.099]$
250, $\varepsilon = [0.032, 0.151]$

Figure 7: GSMs for rockerarm, fertility and pelvis models. Different GSM sheets are shown in different colors. The sweeping strategy is shown for each model on its boundary. For each GSM, the number of slices and the minimum ε and maximum ε are provided below the respective model.

74, $\varepsilon = [0.148, 0.986]$

Figure 8: left column: GSM; middle column: 1D curve skeleton; right column: Discrete Scale Axis. Different GSM sheets are shown in different colors. Furthermore, the sweeping strategy is shown on its boundary. The number of slices and the minimum ε and maximum ε for the GSM are provided below the respective model. For the curve skeleton, Laplacian constraint scale and positional constraint weight are 2 and 1, respectively. For discrete scale axis, $\delta = 0.01$ and $s = 1.1$.

two approaches contain only either of the two. The topology of the GSM enables smoothing of sheet boundaries.

The user interaction to compute the harmonic function for the models presented in this paper did not exceed 5 minutes. The remaining pipeline steps to compute the resulting GSM proceeded automatically. To extract one slice and compute its corresponding mid-structure takes about 1 minute in our current implementation. Since this computation can be performed independently per slice, our framework can leverage multi-core computer architectures. We implemented the GSM pipeline on an interlinked Intel Xeon X730 Processor comprised of 32 cores, where GSM computation for the examples shown in this paper did not exceed 20 minutes. In comparison, the representations constructed by global algorithms such as the discrete scale axis [MGP10], the tight co-cone [DG03] or the skeleton computed through mesh contraction [ATC’08] took less than two minutes for the triangle meshes used in this paper. However, the GSM automatically derives the topological structure and classifies sheets, whereas given a medial axis computed from existing techniques, significant additional time is required for sheet classification and other post-processing.

Figure 9 shows an example of an object represented with two different triangulations. The input object in Figure 9 (bottom) has a coarser and more irregular triangulation than Figure 9 (top). It can be seen that sharper features lead to distortions of the harmonic function, resulting in larger slicing densities in these regions, e.g., tips of the dolphin fins in Figure 9. The GSM of the coarser mesh still captures the global shape features represented in the GSM of the object with finer mesh. Since the number of slices for the coarser mesh is a quarter of the finer one, the computation time for its GSM is roughly four times faster.

Limitations: The GSM pipeline requires the user to specify critical points to compute a harmonic function. An appropriate choice of these points could be challenging for models with more complex geometry and topology. The extremal points of a 1D curve skeleton are given as hints to the user to recommend critical points. Note that the resulting GSM has then a visually similar structure to a medial axis. Another limitation is that slices have to be of genus-0 (i.e. no inner boundaries), which is due to the proposed medial axis computation algorithm for the slices requiring a closed input curve. In addition, sharp features in the input object may not be preserved if the cutting misses the features. Furthermore, the current graph matching cannot handle complex configurations of topological changes. Finally, the current computation is relatively slow due to the slow B-spline root solving. We plan to address these issues in future work.
Figure 9: GSMs computed on a uniform vs. coarse feature-aware triangle mesh. Both use one minimum and one maximum. Curved slices created from the harmonic functions are swept from tail to nose and capture overhang regions consistently.

8. Applications

In this section we highlight two potential applications for which a GSM can be useful. In the first application, a GSM could be used to generate a semi-structured hexahedral mesh (Figure 10 (a)) by decomposing the input object into simpler subvolumes, where subvolumes correspond to sheets in the GSM. Then, each subvolume is parameterized. Furthermore, the natural parameterization of the GSM could potentially be used for 3D cross field design which is used to generate a hexahedral mesh using a method such as [NRP11]. The proposed GSM pipeline could help in the following way. A desired cutting strategy could be chosen by the user, where the resulting GSM could be used to align hexahedral elements along the chosen sweeping direction.

The second application lets the user deform the object based on the GSM. The consistent topology of the GSM has the potential to produce higher quality deformations compared to other medial and skeleton based shape deformations. Figure 10 (b) shows an example of the model in Figure 8. The fingers could be deformed using skeleton-based deformation, while the palm could be deformed by editing the surface sheet of the GSM through Laplacian mesh editing.

9. Conclusions

This paper presents a new hybrid mid-structure called the Generalized Swept Mid-structure (GSM), containing curve and surface elements with consistent topology. A pipeline to incrementally construct the GSM of polygonal objects is presented that uses a novel planar mid-structure computation algorithm in conjunction with an algorithm to match two similar 2D mid-structures. The result is a connected structure that the topology of the input surface. The sweeping strategy is determined by a user who selects a small set of critical points to define a harmonic function that naturally conforms to an object’s shape. The GSM is then incrementally constructed by sweeping mid-structures of level sets of the harmonic.

The structure of a GSM is user controlled via the choice of a sweeping strategy and is therefore flexible to adapt appropriately for specific applications. This is not the case for existing skeleton and 3D medial axis algorithms that determine an intrinsic mid-structure. Curve skeletons are more suitable for tube-shaped objects and 3D medial axes are more suitable for objects with more general regions. The hybrid structure of the GSM enables it to be applied for objects consisting of both region types. Existing hybrid skeletonization approaches first compute approximations of 3D medial axes that are then analyzed to differentiate tubular from non-tubular regions. However, those approaches are susceptible to topological issues with the 3D medial axis approximation. We have demonstrated potential GSM applications, such as hexahedral meshing and GSM-based shape deformation.

Acknowledgements

This publication is based on work supported by NSF IIS-1117997, NSF OCI-0906379, NIH-1R01GM098151-01, DOE SciDAC:VACET, and Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors would like to thank Jonathan Palacios for helping with the hexahedral meshing application.

References

