Gaze Tracking: Application to Perception of Symmetry

Manasi Datar
Nikhil Pratap Singh

Introduction

Part1: System
Eye gaze can be defined as the ray of sight which represents person's focus of attention. Eye gaze tracking has been an active research topic for many decades because of its potential usages in various applications such as Human Computer Interaction (HCI), Virtual Reality, Eye Disease Diagnosis and Human Behavior Study, etc.

In order for some of these applications to be developed and become available for use to the average person, the systems used to track and estimate a person’s gaze need to be relatively inexpensive, require no specialized equipment, be non-intrusive (no hardware components are attached to the user), require little or no calibration for new or return users to the system, and be robust against normal head movements.

As a part of the class project (CS 6320) we implement the gaze detection and tracking system based on set of visual cues. We define a set of 12 features representing a person's gaze. We use the k-nearest neighbor learning algorithm for classifier learning. This implementation gives a fairly reasonable accuracy in “per-user-per-session” mode.

Part2: Application to perception of symmetry
Hypothesis: We propose that, there is a trend in perception of symmetry that maps to the human psychology. The gaze scan path over a set of symmetric figures, broken symmetric figures and images with artificially induced asymmetry obtained from vision cues reflect the corresponding distinguishable pattern.
Thus we suggest that the visual cues can be used to track perception of the symmetry and the discontinuities in symmetry which in turn can give us the insight to psychology of perception.

Experimental setup
This is a simple setup with webcam and we have used MATLAB for image acquisition, feature extraction and the classifier training as well. The location is just the usual working desk with the personal desktop machine. The images and video frames are captured using the webcam interfaced with the Matlab Image Acquisition standard toolbox. This does not require expensive equipments or very sophisticated device mechanism to work.
Extraction of visual cues
Visual cues were extracted from the images captured using the above setup. The details of the experiment are given later in the report. Image processing operations used in this process were:

- image gradient
- morphological operators (dilation, erosion, hole-filling)

Based on a combination of inputs from [2] and [3], the following 6 features were chosen for each eye:

- \(x_p, y_p\): co-ordinates of pupil-center w.r.t face-ROI
- \(r_{sc}\): ratio of the left-sclera-region to the right-sclera-region
- \(d(c,p)\): distance between the outer corner of the eye and the pupil center
- \(x_c, y_c\): co-ordinates of the outer corner of the eye w.r.t face-ROI

Feature vectors for the left and right eye were concatenated to form the input vector.

The figure below describes the steps involved in this step.

Fig: Image processing pipeline used to extract visual cues based on methods from [2,3]

The output of this process for the training set was fed into the classification module described below. The model given by the classifier was used along with features computed for the test set, to get gaze data. The analysis of this data is detailed later in the report.

Learning classifier
We have tried k-nearest neighbor (KNN) and Gaussian classifier on the above dataset. We have selected k-nearest neighbor as a choice for our learning routine for this dataset. The results on the Gaussian classifier have also been included and discussed.
Rationale for choosing K-NN:

1. Simple implementation
2. K-NN deals more robustly with continuous valued features, presumably because it actually uses most of the features to make the classification.
3. Intuitively it makes sense to use K-NN for graphically systematic data.
4. Besides K-NN other classifiers can be used:
 1. Gaussian classifier (tried this)
 2. Self organized map (SOM) algorithm
 3. Neural networks (backpropagation)
 4. Nonlinear SVM with gaussian kernel

K-NN Classifier Performance

The below set of results helped us decide the best K for the K-NN classifier

*** *******************
** GAZE TRACKING EXPERIMENTS - LEAVE-ONE-OUT CROSS VALIDATION
*** *******************
leave-one-out cross-validation accuracy of set 1 is 88.8889%
leave-one-out cross-validation accuracy of set 2 is 77.7778%
leave-one-out cross-validation accuracy of set 3 is 77.7778%
leave-one-out cross-validation accuracy of set 4 is 66.6667%
leave-one-out cross-validation accuracy of set 5 is 66.6667%
leave-one-out cross-validation accuracy of set 6 is 55.5556%
leave-one-out cross-validation accuracy of set 7 is 55.5556%
Press any key to continue...

NOW RUNNING DATA PREPROCESSING SCRIPT...
Press any key to continue...

NOW RUNNING DATA ANALYSIS SCRIPT...
Press any key to continue...

initializing empty results

** GAZE TRACKING EXPERIMENTS

Press any key to continue...

First, we load the data...

We randomize the training set and pick 20% of the data as test set...
Press any key to continue...

Note: Since we have limited data points, say just 3-5 sets of calibration data, we artificially create data points by replicating the data by adding noise. This is done just to get an idea of what K works better for this particular kind of dataset. The solution to this problem would ideally involve gathering enough sample points to ensure large training set.

Now, we vary the k for the KNN classifier and see how it affects accuracy.
K=1: accuracy 100%
K=4: accuracy 100%
K=8: accuracy 100%
K=16: accuracy 100%
K=32: accuracy 97.7358%
K=64: accuracy 79.6226%

Another set of results yield the below graph:
Gaussian classifier performance

leave-one-out cross-validation accuracy of set 1
0 1: identity, shared ==> ... accuracy train = 0.720459, dev = 0.777778
1 1: diagonal, shared ==> ... accuracy train = 0.730159, dev = 0.777778
2 1: full , shared ==> ... accuracy train = 0.812169, dev = 0.777778
1 0: diagonal, per-class ==> ... accuracy train = 0.732804, dev = 0.777778
2 0: full , per-class ==> ... accuracy train = 0.887125, dev = 0.888889

leave-one-out cross-validation accuracy of set 2
0 1: identity, shared ==> ... accuracy train = 0.732804, dev = 0.555556
1 1: diagonal, shared ==> ... accuracy train = 0.747795, dev = 0.555556
2 1: full , shared ==> ... accuracy train = 0.822751, dev = 0.666667
1 0: diagonal, per-class ==> ... accuracy train = 0.700176, dev = 0.777778
2 0: full , per-class ==> ... accuracy train = 0.923280, dev = 0.777778

leave-one-out cross-validation accuracy of set 3
0 1: identity, shared ==> ... accuracy train = 0.676367, dev = 0.666667
1 1: diagonal, shared ==> ... accuracy train = 0.747795, dev = 0.555556
2 1: full , shared ==> ... accuracy train = 0.836861, dev = 0.666667
1 0: diagonal, per-class ==> ... accuracy train = 0.684303, dev = 0.777778
2 0: full , per-class ==> ... accuracy train = 0.873898, dev = 0.777778

leave-one-out cross-validation accuracy of set 4
This gives promising results and looks to be a good alternative to k-nn. If time permits we would try this model out on this dataset.

Factors affecting accuracy of the implementation
1. Size of the monitor display.
2. Head movements.
3. Number of calibration sets. (training data)
4. ROI picking methodology – eyes/face

Experiments
A regular 3x3 grid (shown in figure below) was used for calibration. Points on the grid were highlighted sequentially and an image was captured while the subject gazed at the point. This was repeated for the image. In total, 3 sets of calibration data were acquired.

The gaze data collected from the above experiment was used to train the classifier mentioned above. We chose synthetic and real images which had a break in symmetry in one particular region to test our hypothesis. An example of each is shown below (the region of interest is highlighted):

The synthetic image was created to have a symmetric object in each region. The symmetry was broken
arbitrarily in 3 regions. The real images were chosen from the Internet and showed a fair amount of symmetry with a few aberrations.

Results
We realized early on that we will not be able to capture enough training images to get results which allow exhaustive testing of our hypothesis. Hence, only qualitative evaluation was done and some of the results are shown below.

![Fig: Best result obtained using experimental setup described. Other results were promising, but not as conclusive](image)

Conclusion
We analyze all the results with the assumption that there is evidence of symmetry in the images, and that a break in symmetry or aberration exists naturally (as in real images) or has been inserted (as in the synthetic image).

Gaze Histograms
Gaze histograms can be used as a tool to analyze the span of attention. We see a distinct increase in the attention paid to regions with aberrations (or break in symmetry). A trend can only be detected if we observe the same increase across a population of subjects. However, this serves as a proof of concept that vision cues can be used to assess symmetry in an image or vice versa.
Gaze Paths
Gaze paths can be used to analyze the path of interest and its correlation with the underlying symmetry. The gaze path for an image with no observable break in symmetry (e.g. row 3 in results above) is distinctly different from that obtained by gazing at an image with a break in symmetry. The other important observation is that this path links the aberration-region with its corresponding region as defined by the image symmetry (e.g. row 4 in results above).

This data is clearly insufficient to draw poignant conclusions about general trends of perception, but does indicate a potential relationship between gaze and the perception of symmetry.

Challenges
Acquiring sufficient data to train the classifier was the biggest challenge. Our analysis and conclusions are severely limited due to the sparse nature of the data collected.

Future work and improvements
1. Feature extraction: feature extraction robust to head movements by doing face detection.
2. Automation of ROI extraction with tracking of eye over the frames.
3. Classifier tuning to increase accuracies of predictions. We can try Gaussian classifier, neural networks, SOM etc.
4. Set up experiments to acquire a larger amount of training data to improve classification accuracy and analysis of gaze.
5. Generalize the model from current implementation of per-user-per-session to many-users-many-sessions applicability.

References
1. “Symmetry as perception factor and the basis of "good form"," Webpage URL: http://www.mi.sanu.ac.yu/vismath/jadrbookhtml/part46.html
