Distributed Trajectory Similarity Search

Dong Xie, Feifei Li, Jeff M. Phillips
{dongx, lifeifei, jeffp}@cs.utah.edu
University of Utah

Motivation

Huge amount of trajectory data are being generated everyday. Widely used in traffic analysis, transportation planning. Classic problem: find *similar* trajectories. Require distributed solutions to scale out.

Trajectory Similarity Search

k nearest neighbor query over trajectories under a specific distance metric D.

Not yet studied under a distributed environment.

Different metrics: Hausdorff distance vs. Frechet distance

Pruning Theorem

Given a distance threshold $\varepsilon > 0$, and two trajectories Q and T. If there exists a segment $\ell_i \in T$ such that $\text{mindist}(\ell_i, Q) > \varepsilon$, then we have $D_H(Q, T) > \varepsilon$ and $D_F(Q, T) > \varepsilon$.

Segment-based vs. Trajectory-based Indexing

Partition trajectories as individual objects

Partition all segments in trajectories

Search Procedure

Step 1: Pruning Bound Selection
Find a safe pruning bound ε covering at least k data trajectories. Sample $c \cdot k$ trajectories passing similar regions as the query trajectory. Find the k-th closest distance as the pruning bound ε.

Theory beneath: quantile estimation based on samples.

Step 2: Index-based Pruning
Utilize the distributed index to find the set of trajectory IDs can be safely pruned by ε.

Step 3: Finalizing Results
Rebuild all candidate trajectories, then launch a distributed top-k.

Two Level Indexing in Apache Spark

Design Choice and Optimization

Concise Data Structure for TID sets in customized R-Trees.

Roaring Bitmap: a *concise and flexible* compressed bitmap

Dual Indexing Strategy.
Keep another data copy organized in trajectory objects. Eliminate the procedure of regrouping candidate trajectories.

Experiment Results