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The World in a Nutshell: Concise Range Queries
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Abstract—With the advance of wireless communication technology, it is quite common for people to view maps or get related services
from the handheld devices, such as mobile phones and PDAs. Range queries, as one of the most commonly used tools, are often
posed by the users to retrieve needful information from a spatial database. However, due to the limits of communication bandwidth
and hardware power of handheld devices, displaying all the results of a range query on a handheld device is neither communication
efficient nor informative to the users. This is simply because that there are often too many results returned from a range query. In view
of this problem, we present a novel idea that a concise representation of a specified size for the range query results, while incurring
minimal information loss, shall be computed and returned to the user. Such a concise range query not only reduces communication
costs, but also offers better usability to the users, providing an opportunity for interactive exploration.
The usefulness of the concise range queries is confirmed by comparing it with other possible alternatives, such as sampling and
clustering. Unfortunately, we prove that finding the optimal representation with minimum information loss is an NP-hard problem.
Therefore, we propose several effective and non-trivial algorithms to find a good approximate result. Extensive experiments on real-
world data have demonstrated the effectiveness and efficiency of the proposed techniques.

Index Terms—Spatial databases, range queries, algorithms.
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1 INTRODUCTION

Spatial databases have witnessed an increasing number
of applications recently, partially due to the fast advance
in the fields of mobile computing, embedded systems
and the spread of the Internet. For example, it is quite
common these days that people want to figure out
the driving or walking directions from their handheld
devices (mobile phones or PDAs). However, facing the
huge amount of spatial data collected by various devices,
such as sensors and satellites, and limited bandwidth
and/or computing power of handheld devices, how to
deliver light but usable results to the clients is a very
interesting, and of course, challenging task.

Our work has the same motivation as several recent
work on finding good representatives for large query
answers, for example, representative skyline points in
[1]. Furthermore, such requirements are not specific to
spatial databases. General query processing for large
relational databases and OLAP data warehouses has
posed similar challenges. For example, approximate,
scalable query processing has been a focal point in the
recent work [2] where the goal is to provide light, usable
representations of the query results early in the query
processing stage, such that an interactive query process
is possible. In fact, [2] argued to return concise represen-
tations of the final query results in every possible stage
of a long-running query evaluation. However, the focus
of [2] is on join queries in the relational database and
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the approximate representation is a random sample of
the final query results. Soon we will see, the goal of this
work is different and random sampling is not a good
solution for our problem.

For our purpose, light refers to the fact that the repre-
sentation of the query results must be small in size, and
it is important for three reasons. First of all, the client-
server bandwidth is often limited. This is especially true
for mobile computing and embedded systems, which
prevents the communication of query results with a
large size. Moreover, it is equally the same for appli-
cations with PCs over the Internet. In these scenarios,
the response time is a very critical factor for attracting
users to choose the service of a product among different
alternatives, e.g., Google Map vs. Mapquest, since long
response time may blemish the user experience. This
is especially important when the query results have
large scale. Secondly, clients’ devices are often limited in
both computational and memory resources. Large query
results make it extremely difficult for clients to process,
if not impossible. This is especially true for mobile
computing and embedded systems. Thirdly, when the
query result size is large, it puts a computational and I/O
burden on the server. The database indexing community
has devoted a lot of effort in designing various efficient
index structures to speed up query processing, but the
result size imposes an inherent lower bound on the
query processing cost. If we return a small representation
of the whole query results, there is also potential in
reducing the processing cost on the server and getting
around this lower bound. As we see, simply applying
compression techniques only solves the first problem,
but not the latter two.

Usability refers to the question of whether the user
could derive meaningful knowledge from the query
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results. Note that more results do not necessarily imply
better usability. On the contrary, too much information
may do more harm than good, which is commonly
known as the information overload problem. As a concrete
example, suppose that a user issues a query to her
GPS device to find restaurants in the downtown Boston
area. Most readers having used a GPS device could
quickly realize that the results returned in this case could
be almost useless to the client for making a choice.
The results (i.e., a large set of points) shown on the
small screen of a handheld device may squeeze together
and overlap. It is hard to differentiate them, let alone
use this information! A properly sized representation of
the results will actually improve usability. In addition,
usability is often related to another component, namely,
query interactiveness, that has become more and more im-
portant. Interactiveness refers to the capability of letting
the user provide feedback to the server and refine the
query results as he or she wishes. This is important as
very often, the user would like to have a rough idea for
a large region first, which provides valuable information
to narrow down her query to specific regions. In the
above example, it is much more meaningful to tell the
user a few areas with high concentration of restaurants
(possibly with additional attributes, such as Italian vs.
American restaurants), so that she could further refine
her query range.

1.1 Problem definition
Motivated by these observations this work introduces
the concept of concise range queries, where concise collec-
tively represents the light, usable, and interactive require-
ments laid out above. Formally, we represent a point set
using a collection of bounding boxes and their associated
counts as a concise representation of the point set.

Definition 1 Let P be a set of n points in R2. Let
P = {P1, . . . , Pk} be a partitioning of the points in
P into k pairwise disjoint subsets. For each subset Pi,
let Ri be the minimum axis-parallel bounding box of
the points in Pi. Then the collection of pairs R =
{(R1, |P1|), . . . , (Rk, |Pk|)} is said to be a concise represen-
tation of size k for P , with P as its underlying partitioning.

We will only return R as a concise representation of a
point set to the user, while the underlying partitioning
P is only used by the DBMS for computing such an R
internally. Note that the definition above can be easily
extended to a set of objects of arbitrary shapes, rather
than just points. In particular, in Section 4 we will apply
the same notion on a set of rectangles. But for now we
will focus on point sets. Clearly, for fixed dimensions
the amount of bytes required to represent R is only
determined by its size k (as each box Ri could be
captured with its bottom left and top right corners).

There could be many possible concise representations
for a given point set P and a given k. Different repre-
sentations could differ dramatically in terms of quality,

as with R, all points in a Pi are replaced by just a
bounding box Ri and a count |Pi|. Intuitively, the smaller
the Ri’s are, the better. In addition, an Ri that contains
a large number of points shall be more important than
one containing few points. Thus we use the following
“information loss” as the quality measure of R.

Definition 2 For a concise representation
R = {(R1, |P1|), . . ., (Rk, |Pk|)} of a point set P ,
its information loss is:

L(R) =
k∑

i=1

(Ri.δx + Ri.δy)|Pi|, (1)

where Ri.δx and Ri.δy denote the x-span and y-span of
Ri, respectively, and we term Ri.δx + Ri.δy as the extent
of Ri.

The rationale behind the above quality measure is
the following. In the concise representation R of P , we
only know that a point p is inside Ri for all p ∈ Pi.
Therefore, the information loss as defined in (1) is the
amount of “uncertainty” in both the x-coordinate and
the y-coordinate of p, summed over all points p in P .

A very relevant problem is the k-anonymity problem
from the privacy preservation domain, which observed
the problem from a completely different angle. In fact,
both k-anonymity and the concise representation could
be viewed as clustering problems with the same objec-
tive function (1). After obtaining the partitioning P , both
of them replace all points in each subset Pi with its
bounding box Ri. However, the key difference is that
k-anonymity requires each cluster to contain at least k
points (in order to preserve privacy) but no constraint on
the number of clusters, whereas in our case the number
of clusters is k while there is no constraint on cluster size.
Extensive research on the k-anonymity [3], [4], [5] has
demonstrated the effectiveness of using (1) as a measure
of the amount of information loss by converting the
point set P into R.

Now, with Definitions 1 and 2, we define concise range
queries.

Definition 3 Given a large point set P in R2, a concise
range query Q with budget k asks for a concise represen-
tation R of size k with the minimum information loss
for the point set P ∩Q.

Therefore, the user can specify a k according to the
bandwidth and/or computing power of her mobile de-
vice, and retrieve the query results in a concise format
meeting her constraints. On the other hand, we can also
fix the information loss L and seek for a concise represen-
tation with a minimum k (the size of the output), which
is a complement problem of Definition 3. Formally,

Definition 4 Given a large point set P in R2, a comple-
ment concise range query Q with budget L asks for a concise
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representation R of a minimum size, i.e., minimum k, for
the point set P ∩Q with information loss L(R) ≤ L.

We will focus on Definition 3 and discuss in Section 5
on how to extend the proposed solutions to complement
concise range queries.

1.2 Summary of Contributions
Therefore, the goal of a concise range query is to find a
concise representation, with the user specified size, for
all the points inside the query range. Ideally, one would
like to have a concise representation of minimum infor-
mation loss. We first give a dynamic programming algo-
rithm that finds the optimal solution in one dimension
in Section 3.1. Unfortunately, this optimization problem
in two or more dimensions is NP-hard. In Section 3.2,
we present a nontrivial reduction from PLANAR 3-SAT
to the concise representation problem and prove its NP-
hardness. Nevertheless, in our applications, the optimal
solution is often unnecessary while efficiency is typically
important. Thus, in Section 3.3 we focus on designing
efficient yet effective algorithms that find good (but not
optimal) concise representations.

The definition as stated requires us to first find the
point sets P ∩Q before trying to solve the optimization
problem, i.e., we first need to process Q as if it were
a standard “exact” range query. Since in our setting
Q is typically large, and we are not aiming at the
optimal solution due to the NP-hardness, this process
is often expensive and unnecessary. Noticing the fact
that we can evaluate L(R) by only looking at R itself
without knowing P ∩ Q, we can actually carry out the
optimization process without computing P ∩ Q in its
entirety. Then in Section 4, we explore how to speed up
query processing by using an existing R-tree built on
the data set P . We present an adaptive R-tree traversal
algorithm that is much more efficient than answering
the query exactly, and also produces high-quality concise
representations of the query results.

We discuss some extensions of concise range queries in
Section 5. In Section 6, we demonstrate the effectiveness
and efficiency of the proposed techniques with extensive
experiments on real data sets. A survey of related works
appears in Section 7 before concluding the paper.

2 LIMITATION OF OTHER ALTERNATIVES

Clustering techniques: There is a natural connec-
tion between the concise range query problem and the
many classic clustering problems, such as k-means, k-
centers, and density based clustering. In fact, our prob-
lem could be interpreted as a new clustering problem
if we return the underlying partitioning P instead of
the concise representation R. Similarly, for existing clus-
tering problems one could return, instead of the actual
clusters, only the “shapes” of the clusters and the num-
bers of points in the clusters. This will deliver a small
representation of the data set as well. Unfortunately, as

the primary goal of all the classic clustering problems
is classification, the various clustering techniques do not
constitute good solutions for our problem. In this section,
we argue why this is the case and motivate the necessity
of seeking new solutions tailored specifically for our
problem.

Consider the example in Figure 1, which shows a typi-
cal distribution of interesting points (such as restaurants)
near a city found in a spatial database. There are a large
number of points in a relatively small downtown area.
The suburbs have a moderate density while the points
are sparsely located in the countryside. For illustration
purposes we suppose the user has a budget k = 3 on
the concise representation.

The concise representation following our definition
will partition this data set into three boxes as in Fig-
ure 1(a) (we omit the counts here). The downtown area
is summarized with a small box with many points. The
suburb is grouped by a larger box that overlaps with
the first box (note that its associated count does not
include those points contained in the first box) and all
the outliers from the countryside are put into a very
large box. One can verify that such a solution indeed
minimizes the information loss (1). The intuition is that
in order to minimize (1), we should partition the points
in such a way that small boxes could have a lot of points
while big boxes should contain as few as possible. If
adding a new point to a cluster increases the size of its
bounding box then we need to exercise extra care, as it
is going to increase the “cost” of all the existing points
in the cluster. In other words, the cost of each point in
a cluster C is determined by the “worst” points in C.
It is this property that differentiates our problem with
all other clustering problems, and actually makes our
definition an ideal choice for obtaining a good concise
representation of the point set.

The result of using the modified k-means approach is
shown in Figure 1(b). Here we also use the bounding
box as the “shape” of the clusters. (Note that using the
(center, radius) pair would be even worse.) Recall that
the objective function of k-means is the sum of distance
(or distance squared) of each point to its closest center.
Thus in this example, this function will be dominated
by the downtown points, so all the 3 centers will be
put in that area, and all the bounding boxes are large.
This obviously is not a good representation of the point
set: It is not too different from that of, say, a uniformly
distributed data set.

One may argue that the result in Figure 1(b) is due
to the presence of outliers. Indeed, there has been a lot
of work on outlier detection, and noise-robust clustering
[6]. However, even if we assume that the outliers can be
perfectly removed and hence the bounding boxes can be
reduced, it still does not solve the problem of putting all
three centers in the downtown (Figure 1(c)). As a result,
roughly 1/3 of the downtown points are mixed together
with the suburban points. Another potential problem is,
what if some of the outliers are important? Although it is
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(a) our result. (b) k-means. (c) k-means without out-
liers.

(d) Density based cluster-
ing.

(e) MinSkew.

Fig. 1. Different alternatives for defining the concise representation, k = 3.

not necessary to pinpoint their exact locations, the user
might still want to know their existence and which re-
gion they are located in. Our representation (Figure 1(a))
with k = 3 only tells the existence of these outliers.
But as we increase k, these outliers will eventually be
partitioned into a few bounding boxes, providing the
user with more and more information about them.

Lastly, Figure 1(d) shows the result obtained by a
density based clustering approach. A typical density
based clustering, such as CLARANS [7], discovers the
clusters by specifying a clustering distance ε. After ran-
domly selecting a starting point for a cluster, the cluster
starts to grow by inserting neighbors whose distance to
some current point in the cluster is less than ε. This
process stops when the cluster cannot grow any more.
This technique, when applied to our setting, has two
major problems. First, we may not find enough clusters
for a given k (assume that there is a support threshold
on the minimum number of points in one cluster). In
this example we will always have only one cluster.
Secondly, the clusters are quite sensitive to the parameter
ε. Specifically, if we set ε small, then we will obtain
only the downtown cluster (Figure 1(d)); if we set ε
large, then we will obtain the cluster containing both
the downtown and the suburb. Neither choice gives us
a good representation of the point set.

Finally, we omit the result from k-centers. Since k-
centers is trying to create clusters that minimize the
maximum distance of any point to its cluster center, it
is easy to see that this produces even worse results than
k-means with respect to being good concise representa-
tions of the input data set. In addition, histogram [28],
[29], [30] is also a popular tool for summarizing data in
several buckets (partitions), however, the construction of
histogram has a different goal from our problem. We will
give a detailed discussion later in Section 7.

In summary, none of the clustering techniques work
well for the concise range query problem since the pri-
mary goal of clustering is classification. To the contrary,
as shown in Figure 1(a), our goal is to build the parti-
tioning P that minimizes the information loss. Hence,
we need to look for new algorithms and techniques for
the concise range query problem, which consciously .

Histogram: Our work is also related to histogram
construction [28], [29], [30]. Specifically, a histogram
consists of several buckets, each of which stores the

frequency of data points in it. The histogram has been
widely used as a tool for selectivity estimation [28],
[29]. Ioannidis and Poosala [28] studied the V-optimal
histogram for 1-dimensional data, whereas Acharya et
al. [29] investigated the histogram, namely MinSkew,
in multidimensional space for spatial data. The con-
struction of V-optimal/MinSkew histogram aims to find
partitions to minimize the error of selectivity estimation
(or called spatial-skew), which is defined as summing up
the multiplication of frequency and the statistical vari-
ance of the spatial densities of all points grouped within
that bucket. Thus, the goal of V-optimal/MinSkew his-
togram is different from ours (i.e. minimizing the infor-
mation loss). Another major difference is that MinSkew
does not allow overlapping buckets, whereas we do.
Figure 1(e) illustrates an example of MinSkew, resulting
in disjoint partitions of the data set. Note, however, that
here the 3 obtained buckets only minimize the spatial-
skew, rather than the information loss (which is defined
as summing up the multiplication of frequency and the
extent of each bucket).

Random sampling: Random sampling is another
tempting choice, but it is easy to see that it is inferior to
our result in the sense that, in order to give the user a
reasonable idea on the data set, a sufficient number of
samples need to be drawn, especially for skewed data
distributions. For example, using k = 3 bounding boxes
roughly corresponds to taking 6 random samples. With
a high concentration of points in the downtown area, it
is very likely that all 6 samples are drawn from there.

Indeed, random sampling is a very general solution
that can be applied on any type of queries. In fact,
the seminal work of [2] proposed to use a random
sample as an approximate representation of the results
of a join, and designed nontrivial algorithms to compute
such a random sample at the early stages of the query
execution process. The fundamental difference between
their work and ours is that the results returned by a
range query in a spatial database are strongly correlated
by the underlying geometry. For instance, if two points
p and q are returned, then all the points in the database
that lie inside the bounding box of p and q must also be
returned. Such a property does not exist in the query re-
sults of a join. Thus, it is difficult to devise more effective
approximate representations for the results of joins than
random sampling. On the other hand, due to the nice
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geometric and distributional properties exhibited by the
range query results, it is possible to design much more
effective means to represent them concisely. Our work is
exactly trying to exploit these nice spatial properties, and
design more effective and efficient techniques tailored
for range queries.

3 THE BASE ALGORITHMS

In this section, we focus on the problem of finding a con-
cise representation for a point set P with the minimum
information loss. First in Section 3.1, we show that in one
dimension, a simple dynamic programming algorithm
finds the optimal solution in polynomial time. However,
this problem becomes NP-hard in two dimensions as
we show in the Section 3.2. Then we settle for efficient
heuristic algorithms for the problem in Section 3.3 for
two or higher dimensions.

3.1 Optimal solution in one dimension

We first give a dynamic programming algorithm for
computing the optimal concise representation for a set
of points P lying on a line. Later in Section 3.3 we will
extend it to higher dimensions, leading to an efficient
heuristic.

Let p1, . . . , pn be the points of P in sorted order.
Let Pi,j represent the optimal partitioning underlying
the best concise representation, i.e., with the minimum
information loss, for the first i points of size j, i ≥ j.
The optimal solution is simply the concise representation
for Pn,k, and Pn,k could be found using a dynamic
programming approach. The key observation is that in
one dimension, the optimal partitioning always contains
segments that do not overlap, i.e., we should always
create a group with consecutive points without any point
from another group in-between. Formally, we have

Lemma 1 Pi,j for i ≤ n, j ≤ k and i ≥ j assigns p1, . . . , pi

into j non-overlapping groups and each group contains all
consecutive points covered by its extent.

Proof: We prove by contradiction. Suppose this is
not the case and Pi,j contains two groups P1 and P2

that overlap in their extents as illustrated in Figure 2. Let
Pi.xl and Pi.xr denote the leftmost and rightmost points
in Pi. Without loss of generality we assume P1.xl ≤
P2.xl. Since P1 intersects P2, we have P2.xl ≤ P1.xr.
If we simply exchange the membership of P1.xr and
P2.xl to get P ′1 and P ′2, it is not hard to see that both
groups’ extents shrink and the numbers of points stay
the same. This contradicts with the assumption that Pi,j

is the optimal partitioning.
Thus, Pi,j is the partitioning with the smallest

information loss from the following i − j + 1
choices: (Pi−1,j−1, {pi}), (Pi−2,j−1, {pi−1, pi}),
. . .,(Pj−1,j−1, {pj , . . . , pi})}. Letting L(Pi,j) be the

information loss of Pi,j , the following dynamic
programming formulation becomes immediate.

L(Pi,j) = min
1≤`≤i−j+1

(L(Pi−`,j−1) + ` · |pi − pi−`+1|), (2)

for 1 ≤ i ≤ n, 2 ≤ j ≤ k and j ≤ i. The base case
is Pi,1 = {{p1, . . . , pi}} for 1 ≤ i ≤ n. Since computing
each L(Pi,j) takes O(n) time, the total running time is
of this algorithm O(kn2).

Theorem 1 In one dimension, the concise representation
with the minimum information loss for a set of points P can
be found in O(kn2) time.

We notice that there is a 1-dimensional approach given
in [3], which is similar to the problem mentioned in this
subsection with the only difference on the condition for
the dynamic programming.

3.2 Hardness of the problem in 2D

Not surprisingly, like many other clustering problems,
for a point set P in R2, the problem of finding a concise
representation of size k with minimum information loss
is NP-hard. Also similar to other clustering problems
in Euclidean space, the NP-hardness proof is quite in-
volved. Below, we give a carefully designed construction
that gives a reduction from PLANAR 3-SAT to the concise
representation problem.

In the classical 3-SAT problem, there are n Boolean
variables x1, . . . , xn and m clauses C1, . . . , Cm, where
each clause is a disjunction of three variables or their
negations. The problem is to decide if there exists an
assignment of variables such that all clauses evaluate to
true. Assume that we map each variable and each clause
to a vertex of an undirected graph G. Then, two nodes u
and v in graph G are connected if and only if u represents
a clause that contains the variable (or its negation)
represented by v. If G is planar, the problem is known
as PLANAR 3-SAT. It is an NP-complete problem [8]. The
problem remains NP-complete even if each variable and
its negation appear in at most 3 clauses. Note that in this
case, any vertex in G has degree at most 3.

Given an instance of PLANAR 3-SAT, we construct a
point set P as follows. First, since any vertex in G has
degree at most 3, we can find a planar embedding of
G such that all the vertices lie on grid points and all
the edges follow non-intersecting grid paths. Such an
embedding can be found in O(n + m) time and the
resulting embedding has area O((n + m)2) [9].

P2.xl P1.xr

P1

P2

P ′

2
P ′

1

Fig. 2. Proof of Lemma 1.
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Fig. 3. The graph G of the PLANAR 3-SAT instance,
where a circle represents a variable and a square rep-
resents a clause. The figure shows the chain of points
surrounding the 3 edges incident to one of the variables.
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Fig. 4. Joining 3 chains at a clause.

For each variable xi, we build a chain of an even
number of points (pi,1, . . . , pi,2ti) surrounding the 3 in-
cident edges of the variable vertex (Figure 3), such that
the `1 distance between any two consecutive points in
the chain (including between pi,2ti

and pi,1) is 0.1. We
also create a point in P at each clause vertex Cj , where
we join the 3 chains corresponding to the 3 variables in
the clause using the configuration in Figure 4. Suppose
xi (or x̄i) appears in Cj , and consider the two nearest
`1-neighbors in the chain of xi. We refer to them as
Cj ’s contacting points in the chain of xi. Note that the `1
distance from Cj to them are both 0.14. If xi appears in
Cj , then we design the chain such that the two contacting
points are xi,2l−1 and xi,2l for some integer l; if x̄i

appears in Cj , then the two contacting points are xi,2l

and xi,2l+1 for some integer l. This is always doable
by appropriately detouring the chain with additional
points. This completes our construction of the point set
P . It is obvious that it takes polynomial time. Finally, we
set k =

∑
i ti.

The basic intuition in our reduction is the
following. We will partition each chain into ti
pairs of points; this gives us k subsets of P .
There are two ways to partition the chain, namely
{{pi,1, pi,2}, {pi,3, pi,4}, . . . , {pi,2ti−1, pi,2ti}} and
{{pi,2ti , pi,1}, {pi,2, pi,3}, . . . , {pi,2ti−2, pi,2ti−1}}. Both
of them have the same minimum information loss for

the chain, and they will correspond to assigning “true”
and “false” to the variable. Next we add each clause
point Cj into one of the pairs in one of its joining chains.
By the way how we choose the contacting points, if xi

appears in Cj and xi = true, then we will be able to
add Cj into the pair of the two contacting points in xi’s
chain, resulting in a bounding box with an extent of
0.19. Similarly we can do the same if x̄i appears in Cj

and xi = false. But if none of the variables satisfies the
clause, Cj will have to be added to a pair consisting of
a contacting point and a non-contacting point, which
will result in a bounding box with an extent > 0.19.
Thus we will be able to decide if the original PLANAR
3-SAT instance is satisfiable or not by looking at the
information loss of the optimal concise representation
of P . In the sequel, we formalize the idea by proving
that the optimal partitioning of P will exactly behave
in the way we have prescribed above.

First, one can verify that the constructed point set P
has the following properties.

Property 1 The `1 distance between any two consecutive
points in any chain is 0.1, while the distance between any
other pair of points is > 0.1.

Property 2 The bounding box for a clause point and the
two contacting points from one of its joining chains has
extent 0.19. The bounding box for any other three points
has extent > 0.19.

Property 3 The extent of the bounding box is ≥ 0.24 for
any 4 points, ≥ 0.32 for any 5 points, ≥ 0.36 for any 6
points, and ≥ 0.38 for any 7 points.

Let Ropt be the optimal concise representation for P
of size k. We first prove the following lemmas.

Lemma 2 L(Ropt) ≥ 0.2k + 0.37m, and the lower bound
can be attained only if each clause point is grouped together
with the two contacting points from one of its joining chains,
while each of the remaining points in P is grouped together
with one of its adjacent neighbors in its chain.

Proof: Please refer to Appendix A.

Lemma 3 The PLANAR 3-SAT instance has a satisfying
assignment if and only if L(Ropt) = 0.2k + 0.37m.

Proof: Please refer to Appendix B.
The following hardness result is an immediate conse-

quence of Lemma 3.

Theorem 2 Given a point set P ⊂ R2 and an integer k, the
problem of finding a concise representation R of size k for P
with the minimum information loss is NP-hard.



7

3.3 Heuristics for two or more dimensions

Given the hardness result, it is very unlikely that we
can find an optimal concise representation R for a
given point set P in polynomial time in two or more
dimensions. Thus in this subsection we try to design
efficient heuristic algorithms that produces an R with
low information loss, although not minimum. Since our
problem is also a clustering problem, it is tempting to
use some popular clustering heuristic, such as the well-
known k-means algorithm, for our problem as well.
However, since the object function makes a big difference
in different clustering problems, the heuristics designed
for other clustering problems do not work for our case.
The k-anonymity problem does share the same object
function with us, but the clustering constraint there is
that each cluster has at least k points, while we require
that the number of clusters is k. These subtle but crucial
differences call for new heuristics to be tailored just for
the concise representation problem.

Algorithm HGroup: Given the optimal algorithm
in one dimension, a straightforward idea is to use a
function Rd → R to map the points of P from higher
dimensions down to one dimension. Such an ordering
function must somehow preserve the proximity relation-
ships among the points. Many techniques exist for such
a purpose (see [10] for a detailed review), among them
the space-filling curves [11] have proved to be a popular
choice. A space-filling curve traverses the space in a pre-
determined order. The most widely used space-filling
curve is the Hilbert curve. The h-th order Hilbert curve
has 2hd cells in d dimensions and visits all the cells in the
manner shown in Figure 5. Each cell will be assigned a
Hilbert value in sequence starting from 0, and all points
falling inside the cell will get the same Hilbert value.
For example, the point shown in Figure 5 has a Hilbert
value of 5.

Our Hilbert-curve based algorithm, called HGroup, is
shown in Algorithm 1. The basic idea is first compute
the Hilbert value for each point in P , and sort all points
by this value, mapping them to one dimension. Then,
we simply group these points using our one-dimensional
dynamic programming algorithm from Section 3.1. More
precisely, equation (2) becomes

L(Pi,j) = min
1≤`≤i−j+1

(L(Pi−`,j−1)+`·extent({pi−`+1, . . . , pi})),

where the extent is calculated using points’ Hilbert val-
ues in one dimension. Thus the running time of HGroup
is still O(kn2), where n is the size of P . Of course,
the optimality of the algorithm will be lost, and the
quality of the result will depend on how well the Hilbert
curve preserves the neighborhood information among
points in the original, higher-dimensional space [12]. It
is not hard to imagine that the performance of HGroup
will not be the best one can hope for, as important
spatial information could be missed by the mapping of
points from two dimension into one dimension. Hence,
it is natural to design better algorithms that work in

5

Fig. 5. The 3rd-order Hilbert curve in two dimensions.

two dimensions directly. On the other hand, HGroup is
appealing by its simplicity and efficiency.

As a final note, the mapping from multidimensional
data to 1-dimensional ones via Hilbert or iDistance [10]
is also studied in [3]. Thus, we do not claim the HGroup
approach is our major contribution.

Algorithm 1: The algorithm HGroup
Compute the Hilbert value h(pi) for each point
pi ∈ P ;
Sort P by h(pi) and map it to one dimension;
Find the partitioning P using dynamic
programming;
Build the concise representation R for P and return;

Algorithm IGroup: Below we present another, more
direct algorithm in two or more dimensions. It is an
iterative algorithm that finds the k groups P1, . . . , Pk,
one at a time. We call this algorithm IGroup. In each
iteration, we start with a seed, randomly chosen from
the remaining points, and greedily add points into the
group one by one. In the i-th iteration, we first initialize
the group Pi to include only the seed. Let U be the set of
remaining points. Let ρ(X) and A(X) be the extent and
area of the minimum bounding box of the set of points
X , respectively. As we add points into Pi, we keep an
estimated total information loss L̃(Pi) for the current Pi,
defined as

L̃(Pi) = ρ(Pi)|Pi|+ 2
√

A(U)/(k − i) · |U |. (3)

Note that the first term in L̃(Pi) is the information
loss of Pi, while the second term is an estimate of the
information loss on the remaining points U , assuming
they are uniformly distributed in the bounding box of
U .

When deciding which point p ∈ U should be added
to Pi, we first compute L̃(Pi ∪ {p}) for all p ∈ U , and
choose the one that minimizes L̃(Pi ∪ {p}). If for all
p ∈ U , L̃(Pi ∪ {p}) ≥ L̃(Pi), then we stop adding points
to Pi. The intuition is that, if we have k − i bounding
boxes left to group the points in U , then one partitioning
that is always doable is to draw k − i squares, each of
dimensions (roughly)

√
A(U)/(k − i) ×

√
A(U)/(k − i),

to enclose all the points, which result in an information
loss equal to the second term of L̃(Pi). If L̃(Pi) cannot
be further reduced by adding more points, we should
probably stop and start a new group.
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When we stop adding points and obtain a Pi, we
record that together with its L̃(Pi) achieved in the end,
and call it a candidate. To improve quality, we carry
out the same process with a number of different seeds,
and choose the best candidate that has attained the
lowest L̃(Pi). Then we proceed to the next group Pi+1.
Finally, for the last group Pk, we simply put all the
remaining points into it. We give the details of the
complete algorithm IGroup in Algorithm 2.

Algorithm 2: The algorithm IGroup
U ← P ;
s ← number of seeds to try;
for i = 1, . . . , k − 1 do

L̃best = ∞;
U ′ ← U ;
for j = 1, . . . , s do

U ← U ′;
ps ← randomly chosen seed from U ;
P ′i ← {ps};
U ← U − {ps};
while true do

Let p = arg minp L̃(P ′i ∪ {p});
if L̃(P ′i ∪ {p}) < L̃(P ′i ) then

P ′i ← P ′i ∪ {p};
U ← U − {p};

else break;

if L̃(P ′i ) < L̃best then
L̃best ← L̃(P ′i );
Pi ← P ′i ;

U ← U − Pi;
output Pi;

There are k − 1 iterations in the algorithm. In each
iteration, we check each of the n points and choose the
best one to add to the current group. In the worst-case,
we could check all the points O(n) times. Each iteration
needs to be repeated for s times with s randomly cho-
sen seeds. So the worst-case running time of IGroup is
O(skn2).

4 QUERY PROCESSING WITH R-TREES

In order to use the algorithms of Section 3.3 to answer a
concise range query Q with budget k from the client, the
database server would first need to evaluate the query
as if it were a standard range query using some spatial
index built on the point set P , typically an R-tree. After
obtaining the complete query results P ∩ Q, the server
then partitions P ∩ Q into k groups and returns the
concise representation. However, as the main motivation
to obtain a concise answer is exactly because P ∩Q is too
large, finding the entire P∩Q and running the algorithms
of Section 3.3 are often too expensive for the database
server. In this section, we present algorithms that process
the concise range query without computing P ∩ Q in
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Fig. 6. The R-tree.

its entirety. The idea is to first find k′ bounding boxes,
for some k′ > k, that collectively contain all the points
in P ∩ Q by using the existing spatial index structure
on P . Each of these bounding boxes is also associated
with the count of points inside. Then we run a weighted
version of the algorithm in Section 3.3, grouping these k′

bounding boxes into k larger bounding boxes to form the
concise representation R. Typically k′ ¿ |P ∩Q|, so we
could expect significant savings in terms of I/O and CPU
costs as compared with answering the query exactly.
Therefore, adopting concise range queries instead of
the traditional exact range queries not only solves the
bandwidth and usability problems, but also leads to
substantial efficiency improvements.

The algorithms presented in this section in general
work with any space-partitioning index structure; for
concreteness we will proceed with the R-tree, which is
arguably the most widely used spatial index structure.
The R-tree [13] and its variants (R∗-tree in particular [14])
all have the following structure. Suppose the disk block
size is B. We first group ≤ B points in proximity area
into a minimum bounding rectangle (MBR); these points
will be stored at a leaf on the R-tree. These MBRs are then
further grouped together level by level until there is only
one left. Each node u in the R-tree is associated with the
MBR enclosing all the points stored below, denoted by
MBR(u). Each internal node also stores the MBRs of all
its children. An example of the R-tree is illustrated in
Figure 6. Different R-tree variants only differ in the rules
how the MBRs or points are grouped together.

The standard range query Q can be processed using
an R-tree as follows. We start from the root of the R-
tree, and check the MBR of each of its children. Then
we recursively visit any node u whose MBR intersects
or falls inside Q. When we reach a leaf, we simply return
all the points stored there that are inside Q.

In this section, we in addition assume that each node
u in the R-tree also keeps nu, the number of the points
stored below its subtree. Such counts can be easily
computed and maintained in the R-tree.

Basic ideas: In the following, for brevity we will
also say a point is the MBR of itself. The basic idea of
our R-tree based algorithms is to evaluate Q in a way
similar to a standard range query, but stop early in the
tree so that we find k′ MBRs to feed to the algorithm
in Section 3.3, for some α · k ≤ k′ ¿ |P ∩ Q|, where
α > 1 is some constant. The observation is that, since the
R-tree always tries to group close objects together with
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MBRs, these MBRs should be a good representation of
the query results. However, on the other hand, since the
primary goal of the R-tree is fast query processing, the
MBRs do not constitute a good concise representation of
the query result. For example, most R-tree variants try
to minimize the overlap between MBRs, but as we have
seen in Section 2, overlapping among the Ri’s is often
necessary and beneficial for reducing the information
loss. So we do not want to just use these MBRs as the
Ri’s in the concise representation R. Instead we would
like to find k′ ≥ αk MBRs so that there is a chance for
our grouping algorithm of Section 3.3 to further optimize
the concise representation.

Algorithm R-BFS: The straightforward way to find
k′ such MBRs is to visit the part of the R-tree inside
Q in a BFS manner, until we reach a level where there
are at least αk MBRs. We call this algorithm R-BFS. In
particular, for any node u whose MBR is complete inside
Q, we directly return MBR(u) together with nu. For any
node u whose MBR is partially inside Q, we return the
intersection of the MBR(u) and Q, while the associated
count is estimated as1

nu · Area(MBR(u) ∩Q)
Area(Q)

, (4)

assuming uniform distribution of the points in MBR(u).
Algorithm R-Adaptive: The above BFS traversal

treats all nodes alike in the R-tree and will always stop
at a single level. But intuitively, we should go deeper
into regions that are more “interesting”, i.e., regions
deserving more user attention. These regions should get
more budget from the k bounding boxes to be returned
to the user. Therefore, we would like a quantitative
approach to measuring how “interesting” a node in the
R-tree is, and a corresponding traversal algorithm that
visits the R-tree adaptively.

In the algorithm R-Adaptive, we start from the root of
the R-tree with an initial budget of κ = αk, and traverse
the tree top-down recursively. Suppose we are at a node
u with budget κ, and u has b children u1, . . . , ub whose
MBRs are either completely or partially inside Q. Let the
counts associated with them be n1, . . . , nb. Specifically, if
MBR(ui) is completely inside Q, we set ni = nui ; if it is
partially inside, we compute ni proportionally as in (4).

If κ ≤ b, then we call the base algorithms of Section 3.3
to group them into k larger MBRs, and return them.
Otherwise, we allocate the budget κ into κ1, . . . , κb, and
assign κi to ui. For any κi = 1, we directly return
MBR(ui) with ni. If κi ≥ 2, we recursively visit ui with
budget κi.

It now remains to specify how we allocate the budget
into κ1, . . . , κb. Intuitively, if ni is larger, then κi should
also be larger; on the other hand, if MBR(ui) is larger,
κi should be larger too, since if two MBRs contain
the same number of points, then we should allocate

1. Strictly speaking, when using the estimate (4), we will only return
an approximate count for |Pi| in the concise representation. But such
an approximation is usually tolerable.

more budget to the larger one in order to minimize
the total information loss. So the allocation of budget
should depend on a delicate balance between both ni

and the MBR(ui). Below we derive such an allocation
policy assuming that all the points inside each MBR(ui)
are uniformly distributed and each MBR(ui) is fat, i.e.,
having a bounded aspect ratio.

Let the area of MBR(ui)∩Q be Ai. If MBR(ui) is fat,
then when the ni points inside are grouped into κi

bounding boxes, each bounding box has extent roughly
2
√

Ai/κi and contains ni/κi points. So the information
loss for ui is 2

√
Ai/κi ·ni/κi · κi = 2ni

√
Ai/κi. The total

loss is thus

L = 2n1

√
A1/κ1 + · · ·+ 2nb

√
Ab/κb.

We now minimize L under the constraint κ1+· · ·+κb =
κ but allowing the κi’s to be real numbers.

By the Cauchy-Schwartz inequality, we have

L = 2

(∑
i ni

√
Ai/κi

) (∑
i

√
κi

n
1/3
i A

1/6
i

)

∑
i

√
κi

n
1/3
i A

1/6
i

≥ 2
(
∑

i n
1/3
i A

1/6
i )2

∑
i

√
κi

n
1/3
i A

1/6
i

, (5)

while the denominator is

∑

i

√
κi

n
1/3
i A

1/6
i

≤
√√√√

(∑

i

κi

)(∑

i

1

n
2/3
i A

1/3
i

)
(6)

=

√√√√κ

(∑

i

1

n
2/3
i A

1/3
i

)
.

Both inequalities (5) and (6) become equality when
κi ∝ n

2/3
i A

1/3
i , for i = 1, . . . , b. Therefore, we set

κi =

⌈
n

2/3
i A

1/3
i∑

j n
2/3
j A

1/3
j

κ

⌉
. (7)

We use a ceiling in (7) since each κi needs to be an
integer, and the R-tree algorithm is allowed to return
more MBRs than the budget. The final size k in the con-
cise representation will be enforced by the algorithm of
Section 3.3. The procedure of the recursive call visit(u, κ)
is outlined in Algorithm 3. The process starts by calling
visit(root of the R-tree, αk).

The weighted versions of the base algorithms: Our
R-tree based algorithms generate a number of MBRs,
associated with counts, and pass them to the base al-
gorithms of Section 3.3. As described those algorithms
can only process a point set. But it is not difficult to
adapt both HGroup and IGroup to handle a set of MBRs
associated with counts (weights).

First, we simply take the centroids of each MBR to
form the points in P and each point has a weight that is
equal to the count of the corresponding MBR. Then, for
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Algorithm 3: Recursive call visit(u, κ)
Let u1, . . . , ub be u’s children whose MBRs are
inside or partially inside Q;
Let ni = number of points inside MBR(ui)∩Q;
if b ≥ κ then

output MBR(ui)∩Q with ni for all i;
return;

Let Ai = Area(MBR(ui)∩Q);
Compute κi as in (7) for all i = 1, . . . , b;
for i = 1, . . . , b do

if κi = 1 then
output MBR(ui)∩Q with ni;

else
visit(ui, κi);

the dynamic programming algorithm (which is used in
algorithm HGroup), we change equation (2) to

L(Pi,j) = min`(L(Pi−`,j−1) + extent({pi−`+1, . . . , pi})
·∑i

r=i−`+1 w(pr)),

where w(p) denotes the weight of p.
For the algorithm IGroup, we simply update (3) as

L̃(Pi) = ρ(Pi) ·
∑

p∈Pi

w(p) + 2
√

A(U)/(k − i) ·
∑

p∈U

w(p).

Discussions on the shape of query region: Up to
now, we always assume that the query region Q is
an axis-parallel rectangle. In the case where the query
region Q has other shapes (e.g. rotated rectangle, circle,
or polygon), we can still apply our proposed approaches,
R-BFS and R-Adaptive, with minor modifications. Specifi-
cally, for R-BFS approach, the estimated count associated
with node (partially intersecting with Q) in (4) has to
consider the intersecting area between MBR(u) and Q
of any shape, which can be computed either by geo-
metric position between the two, or by other estimation
techniques such as histograms or sampling. Similarly,
for R-Adaptive, we also need to consider the intersection
between MBR(u) and Q of any shape. We can obtain the
area of the resulting intersection region via techniques
mentioned above, and estimate the budget assigned to
the MBR node (as given by (7)).

Discussions on other spatial data types: We now
discuss how to extend our solutions of answering concise
range queries on data points to that on other spatial data
types such as lines or rectangles. In particular, although
our proposed approaches are originally designed for
answering concise queries over data points, they are
still applicable to spatial data with other shapes. In
fact, in the literature of spatial databases [14], spatial
objects are often simplified by rectangles (which bound
spatial objects with arbitrary shapes). Our extension of
concise range queries on lines or rectangles can be as
follows. First, we bound lines/rectangles with minimum
bounding rectangles (MBRs). Then, we index the result-
ing MBRs in an R-tree structure by using the standard

“insert” operator. For any specified concise range Q, we
can conduct the concise range query on such MBRs via
R-tree in the same way as that over data points.

5 EXTENSIONS

Supporting attributes: As we motivated in Sec-
tion 1, it is often useful if we can associate multiple
counts with each bounding box, each of which represents
the number of points with a particular attribute value,
for example Italian, Chinese, and American restaurants.
Such counts can be easily supported. We can augment
each node of the R-tree with the number of objects that
are stored below for each attribute value. Then, after
we have computed the concise representation R, we can
easily also compute the number of points in each Pi for
each attribute value.

Complement concise range queries: As we men-
tioned in Section 1, the user may also be interested
in asking a complement concise range query, i.e., she
specifies a maximum allowed information loss L and
then the goal is to compute a concise representation
of the query results with minimum size that has an
information loss no more than L.

Since by definition, the larger k is, the smaller the
information loss is. Thus, we can conduct a binary search
on k to find the minimum k that satisfies the user’s
requirement. For each k, we apply our algorithm in
Section 3 and 4 to find a concise representation R and
compare with L. Thus, after a logarithmic number of
steps, we can find a goodR that meets the user’s require-
ment. Note that, however, since our heuristic solutions
cannot guarantee to find the minimum information loss
for a given k, this binary search cannot guarantee to find
the minimum k for the complement concise query prob-
lem, either. This is unsurprising, since the complement
concise range query problem can be also shown to be
NP-hard following our proof for the primary problem.

Progressive refinement: Another useful yet simple
extension of our algorithms is to support progressive
refinement of the concise representation. In this case the
user with a slow network connection does not specify
a k beforehand. Instead the database server produces a
series of concise representations of the query results with
geometrically increasing sizes, e.g., k = 10, 20, 40, 80, . . ..
As time goes on, better and better representations are
streamed to the user.

6 EXPERIMENTS

Experimental setup: We have implemented our two
base algorithms, HGroup and IGroup, as well as the two
R-tree traversal algorithms R-BFS and R-Adaptive. Specif-
ically, we used the R*-tree [14] to index all the points in
the data set. The IGroup algorithms first traverse the R-
tree to produce a number of MBRs and feed them into
the base algorithms, so we have in total two combina-
tions: R-BFS+IGroup, R-BFS+HGroup, R-Adaptive+IGroup,
and R-Adaptive+HGroup. The straw-men we compare
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(a) All query results (b) Concise representation of (a) (c) Concise repres. of the query in
(b)

(d) Exact results of the query in (c)

Fig. 7. Visualization of results.

against are k-means clustering algorithm, and MinSkew
histogram [29]. In particular, for k-means and MinSkew,
we first obtain all the data points in the query region via
R-tree, and then conduct either of the two methods to
obtain clusters/partitions. All the algorithms were im-
plemented in C++, and the experiments were conducted
on a machine with a 4GHz CPU and 1G main memory.
The page size of the R-tree is set to 4KB.

Data sets: We tested the query performance of our
approaches over three real data sets, road networks
from North America (NA), California (CA), and City
of San Joaquin County (TG), and one synthetic data
set, Skew. Specifically, for real data sets, NA and CA
are from digital chart of the world server, whereas TG is
from [31]. CA also contains a large number of points
of interest (e.g., restaurants, resorts). These data sets are
available online2. Points from the three real data sets
have been normalized to lie within the unit square. The
sizes for CA, NA, and TG are 125, 818, 175, 813, and
18263, respectively. For the synthetic data set, Skew, we
generate 100, 000 data points within the unit square,
where the coordinate on each dimension follows Zipf
distribution (with skewness 0.8).

Note that, we evaluate the query performance on 2D
real/synthetic point data sets mentioned above, since
these spatial data follow typical data distributions in
spatial databases. Moreover, the concise range query on
these 2D spatial data has practical applications such
as electronic maps like Google map or Mapquest, as
mentioned in Section 1, where concise range answers
have to be displayed on the small screens of handheld
devices (e.g. PDA or mobile phone). Thus, we focus
on evaluating 2D data sets in this section (though our
proposed approaches can still hold for data sets with
dimensionality greater than 2, as mentioned in Section
3.3).

Visualization of results and interactive explo-
ration: We first did some test queries, and see if the
concise representation indeed gives the user some intu-
itive high-level ideas about the query results. Figure 7(a)
shows all the points that are returned by a range query
of size 0.1 × 0.1 on the CA data set. There are a total
of 4147 points in the full result, which corresponds to
roughly 33K bytes of data (assuming each coordinate
and each count take 4 bytes). Figure 7(b) shows the

2. http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm

concise representation of the results produced by our R-
Adaptive+IGroup algorithm, where we used k = 20 and
α = 8. When plotting Figure 7(b), the gray scale is set
to be proportional to the density of each bounding box
(count/area). From the visualization results, we can see
that even with k as small as 20, which corresponds to
merely 400 bytes (suppose the user’s bandwidth budget
is 400 bytes), the concise result is already a pretty close
approximation of the exact result. Compared with the
exact results, the concise representation has a 80-fold
reduction in size.

Starting from here, the user can interactively narrow
her query down to areas of her interests, such as high-
density areas or areas with medium-density but closer
to locations of interest, until the query range contains
a small number of results, at which point all the exact
results are returned. For example, Figure 7(c) shows
the concise representation of the zoomed-in query, the
green box, on Figure 7(b), while Figure 7(d) shows the
exact results of the zoomed-in query, the green box, on
Figure 7(c). Since the exact query results in Figure 7(d)
can be represented with less than 400 bytes, all the points
inside the query are returned exactly.

Note that, the resulting concise representations can be
overlapping with each other. However, this is usually
not a problem for the user perception, as long as we ren-
der the higher-density rectangles in front of the lower-
density ones, such as in Fig. 7.

Experimental results with different approaches:
We now compare six approaches R-BFS+IGroup, R-
Adaptive+IGroup, R-BFS+HGroup, R-Adaptive+HGroup, k-
means, and MinSkew [29]. Figure 8 illustrates the query
performance of the six approaches on CA data set, in
terms of the number of I/O cost (number of page ac-
cesses in the R-tree traversal), CPU time, and the average
information loss per point in the concise representations
returned. Note that, here the CPU time does not include
the I/O cost. We fixed the query size at 0.1× 0.1, α = 8,
and k = 60, and set the number of seeds in IGroup as
s = 10.

From Figure 8(a), the I/O costs of R-Adaptive+IGroup
and R-Adaptive+HGroup are the lowest among six
approaches, followed by R-BFS+IGroup and R-
BFS+HGroup, and k-means and MinSkew are highest.
This is because k-means and MinSkew have to retrieve
all the data points (falling into the query region) in the
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(a) I/O cost (b) CPU time (c) Information loss

Fig. 8. Experimental results with different approaches on the CA data set.

(a) NA (b) TG (c) Skew

Fig. 9. Information loss with different approaches on NA, TG, and Skew data sets.

leaf nodes, which incurs the largest number of page
accesses.

In Figure 8(b), the CPU time of MinSkew is the lowest
(about 0.1 second), due to the low cost of constructing
the histogram. However, we can see from Figure 8(c)
that MinSkew has the highest (worst) information loss
among all approaches. The k-means algorithm incurs
high CPU time (about 84 seconds) due to the data
retrieval from the R-tree index and the clustering. Thus,
k-means is not efficient in terms of CPU time (also
true for the I/O cost), though the information loss in
Figure 8(c) is larger than that of R-adaptive IGroup and R-
BFS IGroup. From the experimental results, the HGroup-
based approaches have good response time compared
with the IGroup-based ones, however, with a bit high
information loss. Thus, there is a trade-off between the
query efficiency and information loss here. In practice, if
small response time is strictly required by applications,
we can use the HGroup-based approach to obtain fast
answers; otherwise, the IGroup-based one can be used.

Figures 9(a), 9(b), and 9(c) show the average infor-
mation loss per point on NA, TG, and Skew data sets,
respectively, which has similar trend to CA data set in
Figure 8(c). The only difference is that, for NA and TG
data sets, k-means method has even worse information
loss than R-Adaptive+HGroup. The I/O cost and CPU
time on these 3 data sets are similar to CA, and thus
omitted due to space limit. From the discussions above,
we can see that k-means incurs low query efficiency,
and is worse than IGroup in terms of information loss;
MinSkew returns answers fast, however, with high in-
formation loss (since MinSkew was not designed to min-
imize the information loss). Thus, they are not suitable
for efficiently answering concise queries in applications
like Google map on handheld devices. In the rest of this
section, due to space limit, we only report the results on
one real data set, CA, and one synthetic data set, Skew.

The trends for the other two real data sets, NA and TG,
are similar and thus omitted.

Experimental results with varying k: Next, we
started to look into the performance of these six al-
gorithms. In the first set of experiments, we fixed the
query size at 0.1 × 0.1, α = 8, and varied k from 20 to
100. Figures 10(a)-10(c) present experimental results on
synthetic Skew data set, comparing the six approaches,
whereas Figure 11 shows the same set of experiments on
the real CA data set. Similar to previous results, for the
Skew data set, the k-means and MinSkew incur higher
I/O cost than the other four algorithms in Figure 10(a).
Moreover, as shown in Figure 10(b), the CPU time of k-
means is greater than that of R-adaptive IGroup, R-adaptive
HGroup, and R-BFS HGroup. Although the CPU time of
MinSkew is comparable to the R-adaptive HGroup, from
Figure 10(c), MinSkew has the worst information loss
among all the six approaches. Note that, the information
loss of MinSkew in Figure 10(c) decreases slowly for
larger k values, compared with our approaches. This
is because the MinSkew is designed for minimizing
spatial-skew (rather than information loss). Thus, the
MinSkew algorithm keeps on dividing buckets with the
maximum decreases of spatial-skew (instead of maxi-
mum decreases of information loss). As a result, some
large buckets with small variances (close to uniform),
however, with high information losses, would not be
divided by MinSkew (which is exactly the goal of the
histogram construction); on the other hand, those buck-
ets after splitting can achieve lower information loss,
however, they only contribute a small portion of total
information loss. As a consequence, when the number
of buckets (i.e. k) becomes larger, the decreasing trend
of information loss in MinSkew is small, compared with
other approaches, as confirmed in Figure 10(c).

In the subsequent experiments, for the sake of
clearly illustrating the trend of our approaches, we will
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Fig. 10. Experimental results with varying k on the Skew data set.
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Fig. 11. Experimental results with varying k on the CA data set.

only report the results with our four algorithms R-
BFS+IGroup, R-Adaptive+IGroup, R-BFS+HGroup, and R-
Adaptive+HGroup. We next investigate the trend of our
approaches for different k values on CA data set in
Figure 11. Specifically, Figure 11(a) shows the I/O cost
of the four algorithms. Since the base algorithms do not
incur any I/O, we only show the I/O costs of the two
R-tree algorithms. We can see that the number of page
accesses of R-BFS increases quickly as k gets larger. This
is because it visits the R-tree indistinguishably. Once a
certain level of the R-tree has less than αk MBRs in the
query range, it visits all the nodes one level down. Thus
the number of nodes accessed increases very quickly due
to the large fan-out of the R-tree.

Figure 11(b) shows the CPU time of the four algo-
rithms. First, we observe that the two variants using R-
BFS run much slower than the two R-Adaptive variants.
This is expected, since the number of MBRs returned by
R-BFS is much larger, and the running time is dominated
by the grouping algorithms, which have complexities
O(kn2) for HGroup and O(skn2) for IGroup, respectively,
where n is the number of MBRs to be grouped. Com-
paring the two grouping algorithms, we observe that
HGroup is faster than IGroup, which generally agrees
with the analysis.

Figure 11(c) shows the average information loss per
point in the concise representations returned, where we
observe the following. First, the two IGroup based vari-
ants produce much better results than the two HGroup

based variants. The explanation is possibly that, since
the Hilbert curve imposes a linear order on the two-
dimensional data set, some important geometric proper-
ties are lost. While Hilbert curve based clustering algo-
rithms [12] generally work well, our problem is funda-
mentally different from traditional clustering problems
(as discussed in Section 2). Thus, simply extending the
one-dimensional dynamic programming algorithm to
two dimensions by Hilbert curves does not work as well
as IGroup, which is directly designed for two dimensions.
Secondly, coupled with the same grouping algorithm, R-
Adaptive works much better than R-BFS. This means that
visiting the R-tree more selectively does not only save
the traversal cost, but also leads to better quality of the
results. In addition, we observe that larger k’s improve
the quality for all the algorithms. This is intuitive, since
as the size of the concise representation increases, it
becomes closer and closer to the exact results. For NA
and TG data sets, the query performance is similar and
omitted due to space limit.

Experimental results with varying α: In the second
set of experiments, we fixed the query size at 0.1 × 0.1,
k = 60, and varied α from 2 to 32. In Figure 12 we
plot the I/O cost, CPU time, and information loss for
the four algorithms on the CA data set. The trends on
the I/O cost and CPU time in this set of experiments
are similar to those in the experiments with varying k.
This is not surprising, since both the I/O cost and CPU
time depend only on the product α · k. The larger this
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Fig. 12. Experimental results with varying α on the CA data set.
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Fig. 13. Experimental results with varying α on the Skew data set.

product is, the more costly the algorithms are. Thus, the
combination of R-Adaptive+IGroup is still the best in all
algorithms in terms of information loss and its I/O cost.

For R-Adaptive+IGroup, we do see that larger α’s lead
to better results since the R-tree traversal can return
more candidate MBRs for IGroup to choose to form the
partitions (Figure 12(c)). But we do not find the same
trend with the other algorithms, which could mean that
although R-BFS returns more candidate MBRs, they are
of low quality. HGroup does not work well even with
more freedom in grouping these MBRs, as long as the
result size constraint, k, is fixed.

Furthermore, Figures 13(a)-13(c) illustrate the query
performance on synthetic Skew data set with the same
settings. The experimental results are similar to that of
CA. We do not show the similar results on NA and TG
data sets here due to space limit.

Experimental results with varying query size: In
the last set of experiments, we fixed k = 60, α = 8, and
varied the query size from 0.05 × 0.05 to 0.2 × 0.2. The
results on I/O cost, CPU time, and information loss on
the CA data set are shown in Figure 14. First, similar to
the previous two sets of experiments, the I/O cost of the
algorithms increase as the query range gets larger. But
this time the increase rate of R-BFS is slower than that
when α · k increases. This can be explained by the fact
that, when α · k increases, whenever a certain level of
the R-tree does not contain enough MBRs, R-BFS simply
goes one level down, increasing the number of MBRs
returned exponentially. When α ·k is fixed but the query
range gets larger, this increase is more “gradual”: R-BFS

will not go deep into the R-tree but rather go wide. So the
number of page accesses increases more smoothly in this
case. Nevertheless, the I/O cost of R-BFS is still much
larger than that of R-Adaptive. In terms of CPU time,
the trend is similar, i.e., all the algorithms take longer to
run as the query gets larger. This is because of the high
query selectivity, which requires more cost to retrieve
and process data. Therefore, in practice, if small response
time is strictly required (or the query region is large),
we can use the HGroup-based approach to obtain fast
answers; otherwise, the IGroup-based one can be used.
Moreover, the information loss also gets larger for larger
queries, which is not surprising. But across all queries, R-
Adaptive+IGroup consistently beats all other alternatives.

Figures 15(a)-15(c) show the similar results on syn-
thetic Skew data set under the same settings. For NA
and TG data sets, the trends are similar and omitted due
to space limit.

Finally, we also report the performance of our pro-
posed four approaches with spatial objects of rectangular
shape rather than data points. In particular, we first treat
points in Skew data set as centers of objects, and then
generate their (half) extents with a random value within
[0, 1]. The results are reported in Figure 16 in terms of
I/O cost, CPU time, and information loss. We can see
that the trend of our approaches on objects of rectangular
shape is similar to that of point data sets.

7 RELATED WORK

The motivation of this work is very similar to the
recent work of Jermaine et al. [2]. The focus of [2] is
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Fig. 14. Experimental results with varying query range on the CA data set.
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Fig. 15. Experimental results with varying query range on the Skew data set.
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Fig. 16. Experimental results on Skew data set with objects of rectangular shape.

to produce approximate results for long-running join
queries in a relational database engine at early stages
of the query execution process. The “approximation”
defined there is a random sample of the final results. As
we elaborated in Section 2, due to the nice geometric
properties of range queries in spatial databases, it is
important to design more effective and efficient methods
than random sampling. The goal of this work is thus to
derive such a concise representation for range queries
with the minimal amount of information loss. We also
make use of multi-dimensional indexing structures to
speed up the query answering process. Hence, although
the motivations are similar, our ideas and techniques are
fundamentally different from those in [2]. With similar
arguments, our work also bears the same motivation as
finding the representative skyline points [1], however,
we focus on range queries rather than dominance points.

Section 2 has pointed out the close relationship be-

tween the concise representation problem and classic
clustering problems. I/O-efficient clustering algorithms
have been studied in [15], [16]. In particular, k-medoids
(k-means with the constraint that the cluster center must
be a point from the input data set) and k-centers have
been extended to work for disk-based data sets using
R-trees [17]. The basic idea is to explore the R-tree (in a
top-down fashion) to the first level that provides enough
nodes for clustering. Then some main memory heuris-
tics are applied to these nodes. Of course, additional
information, such as the means of all points within the
subtree of one node and the total number of points in the
same subtree, must be stored in R-tree nodes to enable
this process. Our work focuses on a completely different
definition of clustering, as Section 2 has illustrated the
limitations of using either k-means or k-centers for our
problem. Furthermore, instead of simply retrieving one
level of the R-tree that provides enough nodes for deriv-
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ing k partitions, we have designed an adaptive strategy
to explore R-tree nodes at different levels.

Density based clustering approaches, such as
CLARANS [7] and DBSCAN [18], are another popular
clustering definition. Classic density-based clustering
and other variants have been extended to work with
disk-based data sets as well [15]. Several works have
studied density-based clustering in the context of
spatial databases and extended to road networks [19]
and moving objects [20]. Similarly as above, Section
2 has examined why it is inappropriate to use as the
concise representation. Nevertheless, an interesting
open problem for our work is to study the concise
range queries on road-networks [19] and for moving
objects [20].

In addition, Xu et al. [5] studied the utility-based
anonymization, which proposes heuristic local recoding
methods for the privacy preserving, considering the
utility of attributes. Although the proposed framework
for the greedy top-down method is somewhat similar
to IGroup, the fundamental problem (i.e. k-anonymity)
is different from ours. As mentioned in Section 1.1, the
main difference of our work from k-anonymity [3], [4],
[5] is that, k-anonymity requires each cluster to contain at
least k points (for the sake of privacy preserving), rather
than the number of clusters.

Our work is also related to the data summarization
techniques such as histogram [28], [29], [30]. Specifically,
Ioannidis and Poosala [28] studied the V-optimal his-
togram for 1-dimensional data, whereas Acharya et al.
[29] investigated the histogram, namely MinSkew, in
multidimensional space for spatial data. Note that, Sec-
tion 3.1 discusses how to obtain optimal concise repre-
sentations on 1-dimensional data, whose goal is however
different from that of V-optimal histogram. That is, the
goal of our problem is to minimize the information loss,
which is defined as summing up the multiplication of
frequency and the extent (i.e. the sum of spans of all
dimensions) of each partition, rather than the estimation
error. Furthermore, Jagadish et al. [30] worked on a dual
problem of constructing a histogram, minimizing the
space under the constraint of an acceptable error bound
(for selectivity estimation). In contrast, our problem does
not have the requirement of minimizing the space.

Finally, sampling-based techniques could be applied
to derive concise representations for the results of range
queries. Section 2 has argued that random sampling
requires much larger sizes to be representative and they
are also ineffective in capturing the outliers. The key
observation is that sampling is a very general method
that works for almost any type of data. Spatial data
has special geometric properties that one should exploit.
Other sampling techniques, such as the density biased
sampling [21] and many others, have similar limitations
in the context of range queries.

The basic idea of representing range queries in a
concise format has been published as a short paper in
ICDE’09 [22]. However, the only technical contents in

[22] are the basic one-dimensional dynamic program-
ming algorithm and the HGroup algorithm. The NP-
hardness result for two dimensions, the IGroup algo-
rithm, the R-tree based algorithms, the extensions, as
well as the experiments, are all new in this paper.

8 CONCLUSION

A new concept, that of concise range queries, has been
proposed in this paper, which simultaneously addresses
the following three problems of traditional range queries.
First, it reduces the query result size significantly as
required by the user. The reduced size saves com-
munication bandwidth and also the client’s memory
and computational resources, which are of the high-
est importance for mobile devices. Secondly, although
the query size has been reduced, the usability of the
query results has been actually improved. The concise
representation of the results often gives the user more
intuitive ideas and enables interactive exploration of
the spatial database. Finally, we have designed R-tree
based algorithms so that a concise range query can be
processed much more efficiently than evaluating the
query exactly, especially in terms of I/O cost. This con-
cept, together with its associated techniques presented
here, could greatly enhance user experience of spatial
databases, especially on mobile devices, by summarizing
“the world in a nutshell”.

The concept of concise range queries is quite general.
One can imagine that it could naturally extend to deal
with moving objects [23], [20], [24], uncertainty and
fuzziness in data [25], [26], [27], etc. However, designing
efficient and effective query processing algorithms for
these types of data remains a challenging open problem.
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APPENDIX

A. Proof of Lemma 2.
Proof: Let P be the underlying partitioning of Ropt.

Suppose there are ai subsets of size i in P , i = 1, 2, . . .. By
the properties of P above, we know that the following
is a lower bound on L(Ropt):

f(a1, a2, . . .) = 0.1 · 2a2 + 0.19 · 3a3 + 0.24 · 4a4 + 0.32 · 5a5

+0.36 · 6a6 + 0.38 · (7a7 + 8a8 + · · ·).
We wish to minimize f under the following constraints:

a1 + a2 + a3 + · · · = k, (8)
a1 + 2a2 + 3a3 + · · · = |P | = 2k + m. (9)

Note that k > m. We argue that f achieves minimum
when all the ai’s, except a2 and a3, are zero. Below
we perform a case analysis showing that, if any of
a1, a4, a5, . . . is nonzero, then we could further decrease
f by reassigning some of the ai’s.
• First consider the case a1 ≥ 1. By the constraints

(8) and (9), at least one of a3, a4, . . . must be ≥ 1. If
a3 ≥ 1, we do a1 ← a1− 1, a3 ← a3− 1, a2 ← a2 +2,
and the change in f is −0.19 ·3+0.1 ·2 ·2 = −0.17. If
at ≥ 1 for some t ≥ 4, we do a1 ← a1−1, at ← at−1,
a2 ← a2 + 1, at−1 ← at−1 + 1, and the change in f
is ≤ −0.24 + 0.1 · 2 = −0.04.

• Next consider the case a1 = 0. Then a2 must be ≥ 1
due to the constraints (8), (9), and k > m. If a4 ≥ 1,
we do a2 ← a2 − 1, a4 ← a4 − 1, a3 ← a3 + 2, and
the change in f is −0.1 · 2 − 0.24 · 4 + 0.19 · 3 · 2 =
−0.02. If a5 ≥ 1, we do a2 ← a2 − 1, a5 ← a5 − 1,
a3 ← a3 + 1, a4 ← a4 + 1, and the change in f is
−0.1 ·2−0.32 ·5+0.19 ·3+0.24 ·4 = −0.27. If a6 ≥ 1,
we do a2 ← a2−1, a6 ← a6−1, a4 ← a4 +2, and the
change in f is −0.1 · 2− 0.36 · 6 + 0.24 · 4 · 2 = −0.44.
If at ≥ 1 for some t ≥ 7, we first argue that a2 ≥ t−3.
By (8) we have a3 ≤ k−1−a2. Since a1 = 0, the LHS
of (9) is at least 2a2+3(k−1−a2)+t = 3k−3−a2+t.
So we must have

3k − 3− a2 + t ≤ 2k + m ≤ 3k,

which gives a2 ≥ t − 3. Therefore, we can do at ←
at − 1, a2 ← a2 − (t − 3), a3 ← a3 + (t − 2), which
changes f by −0.38t− 0.1 · 2(t− 3)+0.19 · 3(t− 2) =
−0.01t− 0.54.

Therefore, f achieves minimum with only a2 and
a3 being nonzero. Then by (8) and (9), a2 and a3 are
uniquely determined as a2 = k−m,a3 = m, which yields
L(Ropt) ≥ fmin = 0.1·2·(k−m)+0.19·3·m = 0.2k+0.37m.
Furthermore, by Properties 1 and 2, the only way for
Ropt to achieve this minimum is to partition P in the
way as stated in the lemma.
B. Proof of Lemma 3.

Proof: We first prove the “only if” part. Suppose
the PLANAR 3-SAT instance has a satisfying assign-
ment, then for each xi = true, we group its chain
into {{pi,1, pi,2}, {pi,3, pi,4}, . . ., {pi,2ti−1, pi,2ti

}}, and for

each xi = false, we group its chain into {{pi,2ti
, pi,1},

{pi,2, pi,3}, . . ., {pi,2ti−2, pi,2ti−1}}. This way, for each
clause point, the two contacting points in at least one
of its joining chains are grouped together. Next we add
the clause point into this group. In total, we obtain
m groups of 3 with extent 0.19 and k − m groups of
2 with extent 0.1. This yields a partitioning R with
L(R) = 0.2k+0.37m. By Lemma 2, this must be optimal.

Next we prove the “if” part. Suppose L(Ropt) = 0.2k+
0.37m. By Lemma 2, this is possible only if each point in
any chain is grouped together with one of its adjacent
neighbors. Now consider pi,1 and pi,2 for each i. If pi,1

and pi,2 are in the same group, then we set xi = true;
otherwise we set xi = false. Again by Lemma 2, for each
clause point Cj , the two contacting points in at least one
of its joining chains must be grouped together. So Cj

must be satisfied.


