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Opportunities and Challenges

Full durability

more economical

Enterprise Features 
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Decision 1: Hybrid Memory

• For performance
ØKeep index (small in size) in DRAM.
ØA small part of index may be stored in NVM.
⭐Most KV read takes only one NVM access.
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The characteristics of different data. 

The hybrid memory structure.



Decision 2: Log as Data
• What data should be persistent for 

durability, and How to organize them?
⭐ For Performance: Log plays the role of 

user data, which makes user data only 
written once.

• How to recover
ØRedo the log to reconstruct indexes.
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Decision 3: No Changes to Read Operation

• For easy programming
ØUser KVs encoded in Log & data pool 

keep the original format.
⭐Index need not be re-implemented, so 

as read operations.
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Decision 4: Programming Toolkit

• A toolkit to hide the complexity of NVM programming 
• An allocator to manage both DRAM and NVM;
• A component（the Log & Data Pool ) to store all the persistent data;
• high performance.
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Architecture

• Toolkit
ØAllocator; Log & Data pool

• Database Core
ØSupport abundant models 

for compatibility
ØDatabase components Hybrid 
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Toolkit

• Allocator 
Ø Manages both DRAM and NVM, and 

produces malloc/free style APIs.
Ø Metadata is volatile
Ø An allocation can be recovered.

• Log & Data Pool 
Ø Stores all persistent data, which is 

organized by an atomic persistent list.
Ø Supports persistent and atomic append 

and delete.
Ø Supports recovery.

The log & data pool is a list-organized structure. 
Through scanning it, the allocations can be recovered.

Entry List ^
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Database – Data Encode

• Abundant model and indices

• The Encode Method
ØAbstracted to KV/KKVs.
ØThe key/value can be pointed by 

index as the original Redis.
ØThe implementation of read 

operations remains intact.

Simplified Redis Data layout

new  
layout
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PK
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Database – User Write Operations

• Write operations generate an 
entry to serve as a redo log.
Ø Both Insert and Update operations 

create a user data entry.

Ø Deletion generates a tombstone entry.

Ø Take update as an example

• Disaster Recovery
Ø Sequentially redoes the log to 

reconstruct indices.

^
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GC and Checkpoint

• Entry deletion is done by the background GC thread.
• The deletion order should be right.

• When taking a snapshot/checkpoint
Ø The GC thread protects the entries to be deleted. 
Ø Other procedures of checkpoint are the same as the original Redis’.

Index Pointer queue for GC
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Programming Skills

• Breaking Large Values into Shards for COW 

• Single Tombstone Entry When Possible 

• Prefetching 

• Pin frequently accessed index in DRAM
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Throughputs

The throughputs of string model. The throughputs of hash model.

Tair-PMem is better, compared to fully durable(FD) Redis, 
Tair-PMem is comparable, compared to partially durable (PD) Redis, 
Tair-PMem is always better, compared to TieredMemDB.



99 Percentile Latencies

The 99 percentile latencies of string model. The 99 percentile latencies of hash model. 

Much better 99 percentile latency due to no AOF writing.



Maximum Latencies

The maximum latencies of string model. The maximum latencies of hash model. 

Much more stable because of no AOF rewriting which incurs fork system call.
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Tair-Pmem service on Alibaba Cloud

For More Information

https://www.alibabacloud.com/help/en/apsaradb-for-redis/latest/apsaradb-for-redis-enhanced-edition-persistent-memory-optimized-instances

