
Tair-PMem: A Fully Durable
Non-Volatile Memory Database

Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang,
Xiyu Wang, Qiulei Fu, Wu Qin, Long Qian, Rui Chen, Jiang Qi,
Ruo Wang, Guoyun Zhu, Chenghu Yang, Wei Zhang, Feifei Li

Alibaba Group

Redis Advantages & Disadvantages

Abundant models

Redis

Volatile

Expensive

Difficult

To

Achieve

More Valuable
Information

Larger Cluster

Goals

The Most
Popular
Memory
Database

High Performance

Opportunities and Challenges

Full durability

more economical

Enterprise Features

Abundant models
Challenge 2, Redis compatibility

Challenge 3,
NVM programming complexity

High Performance

Intel Optane PM

PM
(Persistent Memory)

SSD

HDD

DRAM

SSD

HDD

Latency Cost

$16/GB

$1/GB

0.1us

100 us

Challenge 1,

performance degradation

Longer access Latency (3×)
Much lower Bandwidth (10×)

Outline

• Core Design Decisions

• The Database Architecture

• Evaluations

Decision 1: Hybrid Memory

• For performance
ØKeep index (small in size) in DRAM.
ØA small part of index may be stored in NVM.
⭐Most KV read takes only one NVM access.

Index

data in DRAM data in NVM

User KVsPersistent

Volatile

The characteristics of different data.

The hybrid memory structure.

Decision 2: Log as Data
• What data should be persistent for

durability, and How to organize them?
⭐ For Performance: Log plays the role of

user data, which makes user data only
written once.

• How to recover
ØRedo the log to reconstruct indexes.

LOG

data in DRAM data in NVM

Log &
data pool

Volatile
Persistent

Volatile data in DRAM Persistent entry in NVM

Index

Volatile data in NVM

Decision 3: No Changes to Read Operation

• For easy programming
ØUser KVs encoded in Log & data pool

keep the original format.
⭐Index need not be re-implemented, so

as read operations.
Log &
data pool

Index

Volatile
Persistent

Volatile data in DRAM

Volatile data in NVM

Persistent entry in NVM

Decision 4: Programming Toolkit

• A toolkit to hide the complexity of NVM programming
• An allocator to manage both DRAM and NVM;
• A component（the Log & Data Pool) to store all the persistent data;
• high performance.

Allocator Memory Management

Filesystem with DAX

NVMDRAM Volatile Data Volatile Data Persistent DataVolatile Data Volatile Data

volatile data

Hybrid
Memory

Programming
Toolkit

Atomic Durable ListLog & Data Pool

Persistent Data

persistent data

⭐Easy Programming

The structure of toolkit

Outline

• Core Design Decisions

• The Database Architecture

• Evaluations

Architecture

• Toolkit
ØAllocator; Log & Data pool

• Database Core
ØSupport abundant models

for compatibility
ØDatabase components Hybrid

Memory
Programming

Toolkit Memory Management

Filesystem with DAX

NVMDRAM Volatile Data Volatile Data Persistent Data

Atomic Durable ListLog & Data Pool

Allocator

Data
Placement Codec

String Hash Set Sorted
Set List Stream

volatile data persistent data

Support
Database
Core

Database
Components

Redis Data
Models

GC Checkpoint Transaction

Toolkit

• Allocator
Ø Manages both DRAM and NVM, and

produces malloc/free style APIs.
Ø Metadata is volatile
Ø An allocation can be recovered.

• Log & Data Pool
Ø Stores all persistent data, which is

organized by an atomic persistent list.
Ø Supports persistent and atomic append

and delete.
Ø Supports recovery.

The log & data pool is a list-organized structure.
Through scanning it, the allocations can be recovered.

Entry List ^

Allocator Memory Management

Filesystem with DAX

NVMDRAM Volatile Data Volatile Data Persistent DataVolatile Data Volatile Data

volatile data

Hybrid
Memory

Programming
Toolkit

Atomic Durable ListLog & Data Pool

Persistent Data

persistent data

The structure of toolkit

Database – Data Encode

• Abundant model and indices

• The Encode Method
ØAbstracted to KV/KKVs.
ØThe key/value can be pointed by

index as the original Redis.
ØThe implementation of read

operations remains intact.

Simplified Redis Data layout

new
layout

SK1 V1

PK

SK2 V2

Volatile index in DRAM A persistent entry in NVM

Abstract
Redis
data
layout

Volatile index in DRAM

Database – User Write Operations

• Write operations generate an
entry to serve as a redo log.
Ø Both Insert and Update operations

create a user data entry.

Ø Deletion generates a tombstone entry.

Ø Take update as an example

• Disaster Recovery
Ø Sequentially redoes the log to

reconstruct indices.

^

Index

1. copy-on-update

2. commit

pointer queue for GC
3. delete old entries

^

txn list

GC and Checkpoint

• Entry deletion is done by the background GC thread.
• The deletion order should be right.

• When taking a snapshot/checkpoint
Ø The GC thread protects the entries to be deleted.
Ø Other procedures of checkpoint are the same as the original Redis’.

Index Pointer queue for GC

Volatile

Persistent

Entry List

Programming Skills

• Breaking Large Values into Shards for COW

• Single Tombstone Entry When Possible

• Prefetching

• Pin frequently accessed index in DRAM

Outline

• Core Design Decisions

• The Database Architecture

• Evaluations

Throughputs

The throughputs of string model. The throughputs of hash model.

Tair-PMem is better, compared to fully durable(FD) Redis,
Tair-PMem is comparable, compared to partially durable (PD) Redis,
Tair-PMem is always better, compared to TieredMemDB.

99 Percentile Latencies

The 99 percentile latencies of string model. The 99 percentile latencies of hash model.

Much better 99 percentile latency due to no AOF writing.

Maximum Latencies

The maximum latencies of string model. The maximum latencies of hash model.

Much more stable because of no AOF rewriting which incurs fork system call.

Conclusions

Full durability

more economical

Enterprise Features

High Performance

Abundant models

Latency stability Unstable latency

Abundant models

Redis

Volatile

Expensive
High Performance

Tair-Pmem service on Alibaba Cloud

For More Information

https://www.alibabacloud.com/help/en/apsaradb-for-redis/latest/apsaradb-for-redis-enhanced-edition-persistent-memory-optimized-instances

