
6

Robust Approximate Aggregation in Sensor
Data Management Systems

JEFFREY CONSIDINE

Boston University

MARIOS HADJIELEFTHERIOU

AT&T Labs

and

FEIFEI LI, JOHN BYERS, and GEORGE KOLLIOS

Boston University

In the emerging area of sensor-based systems, a significant challenge is to develop scalable, fault-
tolerant methods to extract useful information from the data the sensors collect. An approach to
this data management problem is the use of sensor database systems, which allow users to perform
aggregation queries such as MIN, COUNT, and AVG on the readings of a sensor network. In addi-
tion, more advanced queries such as frequency counting and quantile estimation can be supported.
Due to energy limitations in sensor-based networks, centralized data collection is generally imprac-
tical, so most systems use in-network aggregation to reduce network traffic. However, even these
aggregation strategies remain bandwidth-intensive when combined with the fault-tolerant, multi-
path routing methods often used in these environments. To avoid this expense, we investigate the
use of approximate in-network aggregation using small sketches. We present duplicate-insensitive
sketching techniques that can be implemented efficiently on small sensor devices with limited
hardware support and we analyze both their performance and accuracy. Finally, we present an
experimental evaluation that validates the effectiveness of our methods.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sensor databases, approximation algorithms, aggregation,
sketches, synopses

J. Byers and J. Considine are supported in part by NSF grants ANI-9986397, ANI-0093296, and
ANI-0205294. G. Kollios and F. Li are supported in part by NSF grants IIS-0133825 and IIS-
0308213.
Authors’ addresses: J. Considine, Department of Computer Science, Boston University, 111 Cum-
mington Street, Boston, MA 02215; M. Hadjieleftheriou, AT&T Labs, Inc., Florham Park, NJ;
F. Li, J. Byers, and G. Kollios (corresponding author), Department of Computer Science, Boston
University, 111 Cummington Street, Boston, MA 02215; email: gkollios@cs.bu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/04-ART6 $5.00
DOI 10.1145/1508857.1508863 http://doi.acm.org/10.1145/1508857.1508863

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:2 • J. Considine et al.

ACM Reference Format:
Considine, J., Hadjieleftheriou, M., Li, F., Byers, J., and Kollios, G. 2009. Robust approximate
aggregation in sensor data management systems. ACM Trans. Database Syst. 34, 1, Article 6 (April
2009), 35 pages. DOI = 10.1145/1508857.1508863 http://doi.acm.org/ 10.1145/1508857.1508863

1. INTRODUCTION

As computation-enabled devices shrink in scale and proliferate in quantity, a
relatively recent research direction has emerged to contemplate future appli-
cations of these devices and services to support them. A canonical example of
such a device is a sensor mote, a device with measurement, communication,
and computation capabilities, powered by a small battery [Horton et al. 2002].
Individually, these motes have limited capabilities, but when a large number
of them are networked together into a sensor network, they become much more
capable. Indeed, large-scale sensor networks are now being applied experimen-
tally in a wide variety of areas; some sample applications include environmental
monitoring, surveillance, and traffic monitoring.

In a typical sensor network, each sensor produces a stream of sensory ob-
servations across one or more sensing modalities, for example, one for sens-
ing temperature, another for sensing humidity, a third sensing acceleration,
etc. But for many applications and sensing modalities, it is unnecessary for
each sensor to report its entire data stream in full fidelity. Moreover, in a
resource-constrained sensor network environment, each message transmission
is a significant, energy-expending operation. For this reason, and because in-
dividual readings may be noisy or unavailable, it is natural to use data aggre-
gation to summarize information collected by sensors. As a reflection of this, a
database approach to managing data collected on sensor networks has been ad-
vocated [Yao and Gehrke 2002; Madden et al. 2005], with particular attention
paid to efficient query processing for aggregate queries [Madden et al. 2002;
Yao and Gehrke 2002; Zhao et al. 2003].

In the TinyDB system [Madden et al. 2005, 2003, 2002], users connect to
the sensor network using a workstation or base station directly connected to
a sensor designated as the sink. Aggregate queries over the sensor data are
formulated using a simple SQL-like language, then distributed across the net-
work. Aggregate results are sent back to the workstation over a spanning tree,
with each sensor combining its own data with results received from its chil-
dren. If there are no failures, this in-network aggregation technique is both
effective and energy efficient for distributive and algebraic aggregates [Gray
et al. 1997] such as MIN, MAX, COUNT, and AVG. However, as we will argue,
this technique is much less effective in sensor network scenarios with moder-
ate node and link failure rates. Node failure is inevitable when inexpensive,
faulty components are placed in a variety of uncontrolled or even hostile envi-
ronments. Similarly, link failures and packet losses are common across wire-
less channels because of environmental interference, packet collisions, and low
signal-to-noise ratios [Zhao et al. 2003].

When a spanning tree approach is used for aggregate queries, a single failure
results in an entire subtree of values being lost. If this failure is close to the

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:3

sink, the change in the resulting aggregate can be significant. Retransmission-
based approaches are expensive in this environment, so solutions based upon
multipath routing have been proposed [Madden et al. 2002]. For aggregates
such as MIN and MAX that are monotonic and exemplary, this provides a fault-
tolerant solution. But for duplicate-sensitive aggregates such as COUNT or
AVG that give incorrect results when the same value is counted multiple times,
existing methods are not satisfactory.

In this article, we propose a robust and scalable method for computing
duplicate-sensitive aggregates across faulty sensor networks. Guaranteeing ex-
act solutions in the face of losses is generally impractical, so we instead consider
approximate methods. These methods are robust against both link and node
failures. Our contributions can be summarized as follows.

—We present a method to combine duplicate-insensitive sketches with multi-
path in-network aggregation techniques to produce accurate approximations
with low communication and computation overhead.

—We extend well-known duplicate-insensitive sketches [Flajolet and Martin
1985] to handle SUM aggregates. We present a new algorithm that im-
proves the insertion time of a new item ci into the sketch from O(log2 ci)
to O(log ci). Furthermore, our algorithm can work on small sensor devices
with low-performance hardware.

—We discuss how to extend existing sketching techniques for frequency
estimation and quantile computation and make them duplicate-insensitive
and compatible with multipath routing protocols. In particular, we discuss
and analyze methods to extend the well-known Count-Min [Cormode and
Muthukrishnan 2005a] and Quantile Digest [Shrivastava et al. 2004]
sketches.

—Finally, we present an extensive experimental evaluation of our proposed
methods in comparison with previous approaches.

The remainder of this article proceeds as follows. Background material is
covered in Section 2. A new efficient algorithm to handle SUM aggregates
with duplicate-insensitive sketches is discussed in Section 3. Frequency
counting sketches are presented in Section 4. Quantile estimation sketches are
presented in Section 5. We validate our methods experimentally in Section 6
and we provide a discussion on the experimental results in Section 7. Finally,
we conclude in Section 8.

2. BACKGROUND

We now briefly survey related work. Sensors and their limitations are de-
scribed in Section 2.1. Previous frameworks for processing aggregates are cov-
ered in 2.2, and multipath routing techniques are covered in 2.3. Finally, the
sketches which we use to improve upon these frameworks are introduced in
Section 2.4.

2.1 Sensor Devices

Today’s sensor motes (e.g., Horton et al. [2002]) are full-fledged computer sys-
tems, with a CPU, main memory, operating system, and a suite of sensors. They

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:4 • J. Considine et al.

are powered by small batteries and their lifetime is primarily dependent on the
extent to which battery power is conserved. The power consumption tends to
be dominated by transmitting and receiving messages and most systems try to
minimize the number of messages in order to save power. Also, the communi-
cation between sensors is wireless and the packet loss rate between nodes can
be high. For example, Zhao et al. [2003] reports on experiments in which more
than 10% of the links suffered average loss rate greater than 50%. Another
challenge is that links may be asymmetric, both in loss rates and even reacha-
bility. These limitations motivate the design of new query evaluation methods
that are more appropriate for sensor network environments. First, the query
execution plan must be energy efficient and second, the process must be as
robust as possible, given the communication limitations in these networks. Fi-
nally, we assume that each sensor node is assigned a unique id, which is used
in our methods.

2.2 In-Network Aggregate Query Processing

A simple approach to evaluate an aggregation query is to route all sensed values
to the base station and compute the aggregate there. Although this approach
is simple, the number of messages and the power consumption can be large. A
better approach is to leverage the computational power of the sensor devices and
compute aggregates in-network. Aggregates that can be computed in-network
include all decomposable functions [Madden et al. 2002].

Definition 1. A function f is decomposable if it can be computed by another
function g as follows: f (v1, v2, ..., vn) = g (f (v1, ..., vk), f (vk+1, ..., vn)).

Using decomposable functions, the value of the aggregate function can be
computed for disjoint subsets, and these values can be used to compute the
aggregate of the whole using the merging function g . Our discussion is based
on the TinyDB [Madden et al. 2005] system. However, similar approaches are
used to compute aggregates in other systems [Yao and Gehrke 2002, 2003,
Zhao et al. 2003; Intanagonwiwat et al. 2003]. TinyDB is a query processing
system that uses an SQL-like language to extract information from a sensor
network. In particular, TinyDB uses a database view of the sensor network.
Sensor measurements belong to a single (logical) table called sensors, which has
one tuple for each node per time instant. The attributes of this table include the
sensor id, a temporal attribute, and one attribute for each sensing modality. In
addition, TinyDB allows to store other tables called materialized points, which
are similar to materialized views in relational databases. An example of an
aggregation query in TinyDB is the following.

SELECT COUNT(*)
FROM sensors
WHERE temperature > 30
SAMPLE Period 1s FOR 10s

This query computes the number of sensors that sense a temperature value
more than 30◦ Celsius. The query is executed every 1 second for 10 seconds.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:5

Therefore, the result will be 10 values for 10 different time instants. Details
about the query capabilities of TinyDB are found in Madden et al. [2005].

TinyDB executes the queries using power-efficient methods and in-network
query processing. To perform aggregation queries efficiently with low power
consumption, it uses the Tiny AGgregation (TAG) framework [Madden et al.
2002]. In TAG, the in-network query evaluation has two phases, the distribution
phase and the collection phase. During the distribution phase, the query is
flooded in the network and organizes the nodes into an aggregation tree. The
base station broadcasting the query is the root of the tree. The query message
has a counter that is incremented with each forwarding and counts the hop
distance from the root. In this way, each node is assigned to a specific level
equal to the node’s hop distance from the root. Also, each sensor chooses one of
its neighbors with a smaller hop distance from the root to be its parent in the
aggregation tree.

During the collection phase, each leaf node produces a single tuple and for-
wards this tuple to its parent. The nonleaf nodes receive the tuples of their
children and combine these values. Then, they submit the new partial results
to their own parents. This process runs continuously and after h steps, where
h is the height of the aggregation tree, the aggregate result arrives at the root.
In order to conserve energy, sensor nodes sleep as much as possible, that is,
whenever the processor and radio are idle. When a timer expires or an external
event occurs, the device wakes and starts the processing and communication
phases. At this point, it receives the messages from its children and then sub-
mits the new value(s) to its parent. After this, if no more processing is needed
for that step, it enters again into the sleeping mode [Madden et al. 2003].

As mentioned earlier, this approach works very well for ideal network con-
ditions, but is less effective under lossy conditions. To address this problem,
TAG uses a number of different methods [Madden et al. 2002]. One solution
is to cache previous values and reuse them if newer ones are unavailable. Of
course, these cached values may reflect losses at lower levels of the tree. An-
other approach considered in this same work takes advantage of the fact that
a node may select multiple parents from neighbors at a higher level. Using
this approach, which we refer to as “fractional parents,” the aggregate value
is decomposed into fractions equal to the number of parents. Each fraction is
then sent to a distinct parent instead of sending the whole value to a single
parent. For example, given an aggregate sum of 15 and 2 parents, each par-
ent would be sent the value 7.5. It is easy to demonstrate analytically that
this approach does not improve the expected value of the estimate over the
single-parent approach; it only helps to reduce the variance of the estimated
value at the root. Therefore, the problem of losing a significant fraction of
the aggregate value due to network failures remains. Some recent work has
addressed the aforementioned problem in sensor networks [Considine et al.
2004; Nath et al. 2004; Manjhi et al. 2005; Kamra et al. 2007]. In addition,
similar techniques can be used for aggregation estimation in peer-to-peer net-
works [Kempe et al. 2003; Bawa et al. 2003]. In this article, we propose new
methods to address more general aggregation functions with better complexity
bounds.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:6 • J. Considine et al.

There has been much additional work on sensor network data manage-
ment systems in the past few years, notably on sensor data modeling and
data compression [Deshpande et al. 2004; Deshpande and Madden 2006; Ko-
tidis 2005; Deligiannakis et al. 2004a]. In an effort to minimize the number
of messages and the bandwidth consumed by a TAG-like system, other recent
methods use past values and provide an error guarantee on the aggregation
result [Deligiannakis et al. 2007, 2004b, Sharaf et al. 2004]. These techniques
are orthogonal to our methods and may be combined with the techniques pro-
posed in this article. Finally, a promising new direction in sensor networks is to
consider security and authentication problems. Some recent papers [Przydatek
et al. 2003; Garofalakis et al. 2007] address issues in this area using as a base
technique the sketches that we also use in this article.

2.3 Best-Effort Routing in Sensor Networks

Recent years have seen significant work on best-effort routing in sensor and
other wireless networks. Due to high loss rates and power constraints, a com-
mon approach is to use multipath routing, where more than one copy of a
packet is sent to the destination over different paths. For example, directed
diffusion [Intanagonwiwat et al. 2003] uses a flood to discover short paths that
sensors use to send back responses. Various positive and negative reinforcement
mechanisms are used to improve path quality. Braided diffusion [Ganesan et al.
2001] builds on directed diffusion to use a set of intertwined paths for increased
resilience. A somewhat different approach is used by GRAB [Ye et al. 2005],
where paths are not explicitly chosen, but the width of the upstream broadcast
is controlled.

2.4 Distinct Counting Sketches

Counting sketches (FM sketches) were introduced by Flajolet and Martin
[1985] for the purpose of quickly estimating the number of distinct items in
a database (or stream) in one pass while using only a small amount of space.
Since then, there has been much work developing and generalizing counting
sketches (e.g., Alon et al. [1996], Bar-Yossef et al. [2002], Cormode et al. [2003],
Flajolet [1990], Ganguly et al. [2003], Gibbons and Tirthapura [2001]).

It is well known that an exact solution to the distinct counting problem over
a multiset with n items requires �(n) space. However, only �(log n) space is
required to approximate the number of distinct items [Alon et al. 1996]. The
original FM sketches achieve this bound [Flajolet and Martin 1985], though
they assume a fixed hash function that appears random, so they are vulnerable
to adversarial choices of inputs. We use these sketches since they are very small
and accurate in practice, and describe them in detail next. We also mention that
a different sketching scheme using linear hash functions has been proposed,
that can address adversarial input [Alon et al. 1996]. These sketches are some-
what larger than FM sketches in practice, although a recent technique [Durand
and Flajolet 2003] extends these methods and uses only O(log log n) space.

First, we define the distinct counting problem, and present details of the
FM sketches of Flajolet and Martin [1985] that provide the key property of

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:7

duplicate insensitivity that we exploit along with necessary parts of the theory
behind them.

Definition 2. Given a multiset of items M = {x1, x2, x3, . . . }, the distinct
counting problem is to compute n ≡ ∣∣distinct(M)

∣∣ .
Given a multiset M , the FM sketch of M , denoted S(M), is a bitmap of length

k. The entries of S(M), denoted S(M)[0, . . . , k − 1], are initialized to zero and
are set to one using a random binary hash function h applied to the elements
of M . Formally,

S(M)[i] ≡ 1 iff ∃x ∈ M s.t. min{ j | h(x, j) = 1} = i.

By this definition, each item x sets a single bit in S(M) to one; the bit indexed by
the minimum i for which h(x, i) = 1. This gives a simple serial implementation
which is very fast in practice, as shown in Algorithm 1. The number of times
needed to call the hash function for an item follows a geometric distribution
with p = 1

2 , since every call of the hash function is a Bernoulli trial with a fixed
value of p [Papoulis 1965]. The expected value of the geometric distribution is
1
p = 2. Thus, we have the following claim.

Claim 1. An item xi can be inserted into an FM sketch in O(1) expected time.

Algorithm 1. COUNTINSERT(S,x)

1: i = 0;
2: while hash(x,i) = 0 do
3: i = i + 1;
4: end while
5: S[i] = 1;

We also employ the following useful properties of FM sketches noted
in Flajolet and Martin [1985].

PROPERTY 1. The FM sketch of the union of two multisets is the bit-wise OR
of their FM sketches; that is, S(M1 ∪ M2)[i] = (S(M1)[i] ∨ S(M2)[i]).

PROPERTY 2. S(M) is entirely determined by the distinct items of M. Dupli-
cation and insertion order do not affect S(M).

Property 1 allows each node to compute a sketch of locally held items and
send the small sketch for aggregation elsewhere. Since aggregation via union
operations is inexpensive, it may be performed in the network without signifi-
cant computational burden. Property 2 allows the use of multipath routing of
the sketches for robustness without affecting the accuracy of the estimates.

The next lemma provides key insight into the behavior of FM sketches and
will be the basis of efficient implementations of summation sketches later.

LEMMA 1. For i < log2 n − 2 log2 log2 n, S(M)[i] = 1 with probability 1 −
O(ne− log2

2 n). For i ≥ 3
2 log2 n + δ, with δ ≥ 0, S(M)[i] = 0 with probability

1 − O
(

2−δ√
n

)
.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:8 • J. Considine et al.

PROOF. This lemma is proven in Flajolet and Martin [1985] and follows from
basic balls-and-bins arguments.

The lemma implies that, given an FM sketch of n distinct items, we expect an
initial prefix of all ones and a suffix of all zeros, while only the setting of the bits
around S(M)[log2 n] exhibit much variation. This gives a bound on the number
of bits k required for S(M) in general: k = 3

2 log2 n bits suffice to represent
S(M) with high probability. It also suggests that just considering the length of
the prefix of all ones in this sketch can produce an estimate of n. Formally, let
Rn ≡ min{i | S(M)[i] = 0} when S(M) is an FM sketch of n distinct items. In
other words, Rn is a random variable marking the location of the first zero in
S(M). In Flajolet and Martin [1985], a method to use Rn as an estimator for n
is developed using the following theorems.

THEOREM 1. The expected value of Rn for FM sketches satisfies E[Rn] =
log2(ϕn) + P (log2 n) + o(1), where the constant ϕ is approximately 0.775351 and
P (u) is a periodic and continuous function of u with period 1 and amplitude
bounded by 10−5.

THEOREM 2. The variance of Rn for FM sketches, denoted σ 2
n , satisfies σ 2

n =
σ 2

∞ + Q(log2 n) + o(1), where constant σ 2
∞ is approximately 1.12127 and Q(u) is

a periodic function with mean value 0 and period 1.

Thus, Rn can be used for an unbiased estimator of log2 ϕn if the small periodic
term P (log2 n) is ignored. However, an important concern is that the variance
is slightly more than one, dwarfing P (log2 n), and implying that estimates of n
will often be off by a factor of two or more in either direction.

To improve the variance and confidence of the estimator, FM sketches can use
multiple bitmaps. Specifically, each item is inserted into each of m independent
bitmaps to produce m values, R〈1〉, . . . , R〈m〉. The estimate is then calculated as
follows.

n ≈ (1/ϕ)2
∑

i R〈i〉/m

This estimate is more accurate, with standard error O(1/
√

m), but comes at
the cost of O(m) expected insertion times. To avoid this overhead, an algorithm
called Probabilistic Counting with Stochastic Averaging, or PCSA, was pro-
posed in Flajolet and Martin [1985]. Instead of inserting each item into each of
the m bitmaps, each item is hashed and inserted into only one. Thus, each of the
bitmaps summarizes approximately n/m items. While there is some variation
in how many items are assigned to each bitmap, further analysis showed that
the standard error of PCSA is roughly 0.78/

√
m. Using PCSA, insertion takes

O(1) expected time.
We discuss now how to answer the example COUNT query that we give in

Section 2.2 using FM sketches with PCSA. Every sensor satisfying the WHERE
predicate (e.g., has a temperature reading more than 30◦ Celsius) creates an
FM sketch using its sensor id as a unique item. Therefore, every node creates an
FM sketch with a single bit set to 1. Then, the protocol discussed in Section 2.3
is used to send the sketches up to the next level, until they reach the sink.
Multiple downstream sketches are merged into a single upstream sketch using

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:9

bit-wise OR operations based on Properties 1 and 2. Finally, the sink node, upon
receiving the final sketch of the query, uses the estimation function to compute
an approximate value for the COUNT aggregate.

2.5 Sketch Sizes and Compression

As mentioned earlier, the other main limitation of sensor networks is their
limited bandwidth. This limitation is a cause for concern when comparing
sketching-based techniques against the spanning tree strategies of TAG. While
2 bytes of data per packet will generally suffice for TAG, a single sketch in
our methods also uses 2 bytes and our later experiments will actually use 20
sketches per packet for a single aggregate. However, as implied in part by
Lemma 1, these sketches are compressible. To leverage this, our experiments
will use the compression techniques proposed by Palmer et al. [2002]. In brief,
we use an adapted run-length encoding algorithm to compress the bitmaps in
a given sketch. This reduces the space requirements to about 50% to 70% of
the uncompressed versions. This is sufficient for two aggregates to be sketched
within one TinyDB packet (up to 48 bytes).

2.6 Sketch-Based Aggregate Query Processing

All of the best-effort techniques discussed in Section 2.1 must address the prob-
lem of duplicated data. While it is relatively easy to detect duplicate packets
in the network stack, it is much more difficult to detect data that has been
duplicated within aggregates that may partially, but not completely, overlap.
For example, a data value A might be aggregated with B along one braid of a
diffusion, and with C along a different braid. Naively summing the two braids
double-counts A, while explicitly deduplicating A would necessitate complex
specification of packet contents. A better approach, that we advocate, is to use
a duplicate-insensitive representation of the data, which admits much simpler
multipath in-network aggregation as suggested in TAG. By utilizing duplicate-
insensitive sketches we can build a robust, loss-resilient framework for aggre-
gation. Our methods for aggregation leverage two main observations. First,
the wireless communication of sensor networks gives the ability to broadcast
a single message to multiple neighbors simultaneously. Second, the duplicate-
insensitive sketches allow a sensor to combine all of its received sketches into a
single sent message. Given proper synchronization, this allows us to aggregate
data robustly, with each sensor sending just one broadcast.

Given a continuous aggregation query, the computation proceeds in two
phases. In the first phase, the query is distributed across the sensor network,
often using some form of flooding. During this phase, each node also computes
its level (i.e., its hop distance from the root), and notes the level values of its im-
mediate neighbors. The second phase is divided into a series of epochs specified
by the query. The specified aggregate will be computed once for each epoch.

At the beginning of each epoch, each node constructs a sketch of its local
values for the aggregate. The epoch is then subdivided into a series of rounds,
one for each level, starting with the highest (farthest) level. In each round, the
nodes at the corresponding level broadcast their sketches, and the nodes at

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:10 • J. Considine et al.

Fig. 1. Routing topology for 49-node grid.

the next level receive these sketches and combine them with their sketches in
progress. In the last round, the sink receives the sketches of its neighbors, and
combines them to produce the final aggregate.

As an example, we step through a single epoch aggregating over the topol-
ogy of Figure 1. First, each node creates a fresh sketch summarizing its own
observed values. In the first round of communication, nodes at level 3 broad-
cast their sketches, which are then received by neighboring level-2 nodes and
combined with the sketches of the level-2 nodes. In the second round, nodes at
level-2 broadcast their sketches, which are then received by neighboring level-1
nodes and combined with the sketches of the level-1 nodes. In the third and last
round, nodes at level-1 send their sketches to the sink, which combines them
and extracts the final aggregate value. Note that each node in this topology
except those on the diagonals has multiple shortest paths which are effectively
used, and a value will be included in the final aggregate unless all of its paths
suffer losses.

The tight synchronization described so far is not actually necessary. Our
methods can also be applied using gossip-style communication; the main ad-
vantage of synchronization and rounds is that better scheduling is possible
and power consumption can be reduced. However, if a node receives no ac-
knowledgments of its broadcast, it may be reasonable in practice to retransmit.
More generally, loosening the synchronization increases the robustness of the
final aggregate as paths taking more hops are used to route around failures.
This increased robustness comes at the cost of power consumption, since nodes
broadcast and receive more often (due to values arriving later than expected)
and since computing the final aggregate takes longer.

3. SUMMATION SKETCHES

In this section we discuss robust and efficient methods to answer SUM aggre-
gation queries in sensor networks. We assume that we have a set of sensors,
where each sensor i stores a single value ci. Our goal is to estimate the sum
of these values

∑N
i=1 ci. Again, we would like to use sketches and multipath

in-network aggregation. As before, the value reported by a given sensor may

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:11

appear multiple times in the sink or any other intermediate sensor. To distin-
guish between a duplicate value of the same sensor and the same value coin-
cidentally reported by a different sensor, we associate the sensor id with the
value that sensor reports. Thus, we create pairs 〈ki, ci〉, where ki is the unique
sensor id and ci is the value stored in this sensor. Therefore, to solve the SUM
aggregation query using the in-network multipath aggregation technique, we
need to solve the following problem first.

Definition 3. Let M be a multiset of pairs {〈k1, c1〉, 〈k2, c2〉, . . . } where ki is
a key (i.e., the sensor id for each sensor) and ci is a non-negative integer value.
The distinct summation problem is to calculate the sum of ci for all distinct ki.

DS ≡
∑

distinct(ki∈M)

ci

For summations involving small ci values, we can estimate the distinct sum
by using an FM sketch S. The idea is that, if we need to insert a new value
ci into S, we can deterministically create ci unique items associated with ki
and insert them into the sketch one by one. The FM sketch estimator will
thus be increased by ci in expectation. Concretely, associate with ki the distinct
insertions 〈ki, ci, 1〉, . . . , 〈ki, ci, ci〉. By using purely deterministic routines for
generating these per-pair insertions (e.g., by using a hash function seeded on
ki and ci), duplicate pair insertions will have no effect on the FM sketch. Since
this procedure performs ci invocations of the FM insertion routine per key, the
analysis for FM sketches applies; insertion takes O(ci) expected time. For large
values of ci this approach is not practical, leading us to consider more scalable
alternatives.

Our basic premise is to efficiently configure the bits in the summation FM
sketch as if we had performed ci successive insertions, but without actually
performing them. In other words, we try to efficiently emulate the outcome of ci
sequential insertions into an FM sketch, by drawing uniformly and reproducibly
from the same distribution that these insertions would yield.

3.1 Summation Sketch Algorithm

The key observation behind our faster insertion algorithm is that in the course
of updating the FM sketch with the insertion of key ki, most of the ci subinser-
tions attempt to set the same early bits; repeated attempts at setting the same
bits accomplish nothing. Faster insertions for summation sketches are possible
by skipping over ineffective repeat attempts.

We begin with some definitions. Let S be an FM sketch with a bitmap of
length l , where all bits are initialized to zero. We say that an insertion y =
〈ki, ci, x〉 reaches bit z of the FM sketch if and only if the insertion CountInsert(S,
y) (Algorithm 1) sets a bit S[j], where j ≥ z. and thus min{ j | h(y , j) = 1} ≥ z.
For any sketch, let δ be the maximum value such that all δ least-significant bits
of the sketch have been set by the all the items that have been inserted so far.
A subsequent insertion is nil-potent if it does not reach bit δ + 1, that is, a nil-
potent insertion picks a bit which has already been set and thus is guaranteed
not to change the sketch. Otherwise, an insertion is potent; it sets a bit with

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:12 • J. Considine et al.

Algorithm 2. SUMINSERT(S,k,c)

1: for i = 1, . . . , |S| do
2: S[i] = 0;
3: end for
4: i = 1;
5: while i ≤ c do
6: δ = min {z | S[z] = 0};
7: i = i + (G(1 − 1/2δ) seeded by 〈k, c, i〉);
8: if i ≤ c then
9: z = δ + (G(1/2) seeded by 〈k, c, i〉);
10: S[z] = 1;
11: end if
12: end while

index at least δ + 1. Note that a potent insertion does not necessarily alter the
sketch, since any bit beyond δ may have also been previously set (but does not
belong to the continuous prefix of set bits). To make these points clear, assume
that after a number of insertions, the current state of an FM sketch with size
l = 12 is: 111100101000. The value of δ in this sketch is 4. Consider now a new
item y1 inserted into this sketch using Algorithm 1. If the bit set by this item
is one of the first four bits, then y1 is a nil-potent item. Otherwise, it is called
a potent item. Note that if y1 is potent, it will reach bit five and it will set bit
5 with probability 0.5 (based on Algorithm 1), in which case δ is increased to
5. Alternatively, y1 may set bits after the fifth one. For example, if it attempts
sets the seventh bit to 1, the sketch will not change. On the other hand, it may
set the eighthbit to 1, and in this case the new sketch will be: 111100111000.
In either of these latter two cases, δ will remain the same.

Now, to develop our algorithm, consider that for FM sketches, an insertion is
potent with probability p = 1/2δ, and nil-potent with probability q = 1 − 1/2δ.
Thus we can directly decide weather a particular insertion is potent by sampling
the Bernoulli distribution with parameter p. If an insertion is deemed nil-
potent, it is ignored. Otherwise, we must determine which bit it sets. By the
memorylessness of the geometric distribution used in the FM sketches, this is
straightforward to emulate: The probability that a potent insertion chooses bit
δ + i is exactly 1/2i. Therefore, we can select the value of i by simply drawing
from the geometric distribution G(1/2). We then set bit δ + i, and update δ if
appropriate.

To avoid processing each insertion sequentially, we can also compute the
run-length of nil-potent insertions directly. Based on the previous discussion, a
sequence of nil-potent items corresponds to a sequence of Bernoulli trials with
parameter q. Since a sequence of Bernoulli trials defines a geometric distribu-
tion with the same parameter, we have that the run-length of nil-potent items
in a sequence follows the geometric distribution with parameter q: G(1−1/2δ).

Our algorithm is presented in Algorithm 2, and we recap it now. We initialize
the sketch and δ to zero. Then we repeatedly draw from G(1−1/2δ) to determine

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:13

a run-length of nil-potent insertions to skip. We assume that G(0) is zero (the
case of the first item). After each run, we emulate a potent insertion by draw-
ing from G(1/2) to identify which bit to set. We use the triplet 〈k, c, i〉 to seed
the pseudo-random generator that provides the random values. The reason is
that we need to have independent random values every time that we sample
from a probability distribution. Since the triplet is unique each time, we are
guaranteed that the pseudo-random values that we get are independent of each
other.

3.2 Time and Space Bounds

The running time of the algorithm is dominated by the time needed to sample
the various geometric distributions. The first consideration is to provide meth-
ods to sample the distributions in O(1) expected time and in small space. Then
we analyze the overall expected running time of an insertion, and demonstrate
that it runs in O(log ci) time in expectation and with high probability.

3.2.1 Sampling the Geometric Distribution. A key subroutine we use in
our algorithm is random sampling from the geometric distribution. If suffi-
ciently precise floating point hardware is available, standard techniques such
as the inversion method [Devroye 1986] enable constant-time sampling. Unfor-
tunately, existing sensor motes have neither floating point hardware, nor the
capacity to store the sizable lookup tables used by most of the other classic meth-
ods (e.g., for binary search). For these reasons, standard methods for drawing
from well-known probability distributions are unsuitable. In our earlier work
[Considine et al. 2004], our methods necessitated sampling from both the bino-
mial distribution B(n, p) and the geometric distribution G(1 − p), but our cur-
rent methods require only the latter. Implementation of the following algorith-
mic result enables us to work with table sizes of only 4KB, as we describe later.

LEMMA 2. Using a precomputed lookup table of size O(1/p), we can sample
from G(1 − p) in expected O(1) time.

PROOF. Our result leverages the elegant alias method of Walker [1977] that
builds lookup tables to efficiently generate random samples from arbitrary
probability density functions (pdfs). This work demonstrates the following the-
orem (which has a simple and beautiful implementation).

THEOREM 3. Walker [1977]. For any discrete probability density function D
over a sample space of size k, a table of size O(k) can be constructed in O(k) time
that enables random variables to be drawn from D using two table lookups.

Walker’s method applies to finite distributions, but by virtue of the memory-
lessness property of the geometric distribution, we can apply it to this infinite
distribution as well. First we construct a table T of size k in which the first
k − 1 elements correspond to the probabilities pi of drawing 1 ≤ i ≤ k − 1 from
the geometric distribution G(1 − p) (the body of the distribution), and element
k corresponds to the cumulative tail probability of drawing any value larger
than or equal to k from G(1 − p). To draw a random sample from G(1 − p) we
produce a uniform random number 1 ≤ i ≤ k. If i < k we simply return T [i]

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:14 • J. Considine et al.

as the next sample from G(1 − p). Otherwise, we need to sample from the tail
of the distribution and we iteratively draw another uniform random number,
setting the outcome to T [i] + T [i′], where i′ is the result of the second draw.
We continue iteratively until a random draw chooses a value from the body of
the distribution. By setting k = �1/p�, we achieve the desired space and time
bounds. The space bound is immediate from Walker’s theorem. For the time
bound, since 1/p is the expectation of G(1 − p), the iteration terminates with
constant probability after each round, and thus the expected number of rounds
is O(1).

This is easily extended as follows.

LEMMA 3. Given a fixed set of precomputed tables of size O(m), the geometric
distribution G(1 − 1/2δ) can be sampled in O(1 + 2δ/m) expected time for any
non-negative integer δ.

PROOF. Let δm = �log2 m� and construct the tables of Lemma 2 for p =
1/2, 1/4, . . . , 1/2δm . These tables have total size O(2δm) = O(m) and allow G(1−
1/2δ) to be sampled in O(1) expected time for δ ≤ δm. For δ > δm, G(1 − 1/2δ)
can be sampled by repeatedly sampling G(1 − 1/2δm) until a sample is accepted
with probability 1/2δ−δm and the sum of all the samples so far is returned. Since
the expected number of samples from G(1 − 1/2δm) is 2δ−δm , the total expected
running time is O(1 + 2δ−δm) = O(1 + 2δ/m).

3.2.2 Overall Running Time. We now prove that Algorithm 2 runs in
expected time O(log ci), a considerable improvement over our previous algo-
rithm [Considine et al. 2004] that runs in O(log2 ci) expected time. Our algo-
rithm selects each potent insertion in turn by sampling from the geometric dis-
tribution, then emulates each insertion via another sample from the geometric
distribution. Since sampling from the geometric distribution completes in O(1)
expected time, it remains to bound the expected number of potent insertions.

LEMMA 4. Insertion of an element 〈ki, ci〉 generates at most 7 log2 ci +6 potent
insertions with probability 1 − (3/2)/c.

PROOF. In our method, each potent insertion increases the value of δ by at
least one with probability 1/2. The first 6 log2 ci potent insertions increase δ an
expected 3 log2 ci times. Using Chernoff bounds, the probability that the first
6 log2 ci potent insertions increase δ fewer than log2 ci times is

(
e−2/3

(1 − 2/3)(1−2/3)

)3 log2 ci

≤ 1/2log2 ci ≤ 1/ci.

After the first 6 log2 ci potent insertions, δ ≥ log2 ci with probability ≥ 1 − 1/c.
If the method has not yet terminated once δ ≥ log2 ci, any potent insertion

must have reached bit log2 ci, which occurs with probability 1/ci. The expected
number of insertions reaching bit log2 ci within the next ci insertions is one.
Using Chernoff bounds, the probability that there are more than log2 c + 6

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:15

insertions reaching bit log2 ci within the next ci insertions is bounded by(
elog2 ci+5

(1 + log2 ci + 5)(1+log2 ci)

)1

≤ 1/21+log2 ci ≤ 1/2ci.

This also bounds the number of potent insertions, so there are at most log2 c+6
more potent insertions with probability greater than or equal to 1/2ci.

It remains to bound the time within each iteration of the outer loop. Main-
taining δ is trivially done in O(1) amortized time per iteration. The time to
process an insertion of a potent item in steps 9 and 10 takes also O(1) time per
iteration, since sampling from G(1/2) takes constant time. Applying Lemma 3
allows us to analyze the total cost of sampling and bound the running time of
Algorithm 2.

THEOREM 4. Given a set of lookup tables of size O(m), any element 〈ki, ci〉
can be inserted into a sum sketch in O(log ci + ci/m) expected time.

PROOF. Let δm = log2 m and construct the lookup tables as in Lemma 3. As
long as δ ≤ δm, then sampling G(1 − 1/2δ) takes O(1) expected time. At this
point, there are two main cases to consider, depending on whether Algorithm 2
completes before δ exceeds δm.

Before continuing, note that δ is bounded by the number of iterations of the
outer loop (since δ bits must be set to one first), which in turn is O(log ci) with
high probability by Lemma 4. In the first case where δ ≤ δm at completion, then
each iteration of the outer loop takes expected time O(1), and the total running
time is O(δ) = O(log ci).

We now focus on the second and more involved case where δ > δm at comple-
tion. Since δ increases by at least one with probability 1/2 for each iteration of
the outer loop, the expected number of rounds and the expected time before δ

exceeds δm is O(δm). From this point, the construction in the proof of Lemma 3
is used and sampling G(1 − 1/2δ) will involve repeated samples of G(1 − 2δm).
Each of these samples takes O(1) expected time and corresponds to increasing
the variable j by 2δm in expectation. Thus, as long as j is O(ci) at the end of
Algorithm 2, then the expected number of samples to G(1 − 2δm) and the ex-
pected time after δ exceeds δm is O(ci/2δm) = O(ci/m). But what if j is not O(ci)?
We can avoid this case by noting that the precise value of j is not important
once it is known that j will exceed ci and modifying the sampling procedure
to stop early once this is the case. Thus, the total expected time is O(log ci) for
the outer loop and earlier samples, plus O(ci/m) for extra sampling costs if δ

exceeds δm, for a total of O(log ci + ci/m).

For example, if c is an upper bound on the ci values, then insertions are possi-
ble in O(log ci) expected time using O(c/ log c) space, or O(log2 ci) expected time
using O(c/ log2 c) space. The latter bound was achieved by the earlier version
of this article [Considine et al. 2004]. We note that for small ci values, it may
be faster to use a hybrid implementation combining the naive and scalable in-
sertion functions. Especially for very low ci values, the naive insertion function
will be faster.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:16 • J. Considine et al.

3.3 Improving Accuracy and Other Estimators and Aggregates

To improve the accuracy and confidence of the estimator we use multiple
bitmaps similarly to the FM sketch for distinct counting. PCSA can also be
applied to summation sketches, but greater care is needed. The potential for im-
balance is much larger with summation sketches; a single item can contribute
an arbitrarily large fraction of the total sum. Thus, we employ the following
strategy. Each ci value has the form ci = qib + ri for some integers qi and ri,
with 0 ≤ ri < b. We add ri distinct items only to one bitmap as in standard
PCSA, and then add qi to all bitmaps independently. Thus, we preserve the
balance necessary for the improved accuracy and its analysis, but at the cost of
O(b log(ci/b)) for each insertion. We employ PCSA in our experiments.

The range-efficient sketch algorithm [Aduri and Tirthapura 2005] can be
used to solve the distinct summation problem that we discussed here with
logarithmic update time. However, this method requires computations in an al-
gebraic field using modular multiplications and divisions with extremely large
values. To perform these operations in a small sensor device with limited hard-
ware is a challenge. In practice, a range-efficient sketch implemented on a sen-
sor device will be slower than the simple FM sketch that uses the linear-time
insertion method, because of the cost of these operations and the need to avoid
overflows.

In situations where computational resources are severely constrained, it may
be desirable to reduce the cost of performing insertion operations with summa-
tion sketches. We now briefly mention some trade-offs in the computational
time at the cost of increased communication and decreased accuracy. While
this is unlikely to be desirable in sensor networks, given the high power costs
of communication relative to computation, it may be desirable in other settings
where there are large numbers of items per node.

Suppose that the largest value being inserted is bounded by yx . Then, in-
stead of using the previous approach, We can do the following: We can use x
different summation sketches, each corresponding to a different digit of the
ci ’s using radix y . To add a ci value, each digit of ci is inserted into the cor-
responding sketch, taking expected O(x log y) time, and estimates are made
by summing the counting sketch estimates with the appropriate weights. The
accuracy of this approach is essentially the same as before, with an increase in
space bounded by a factor of x.

Of particular note is the case x = 2, which preserves the asymptotic sketch
size and insertion costs, but dramatically drops the necessary table sizes (to
approximately the square root of the old sizes). However, doubling the sketch
size and associated transmission costs seems undesirable, except when local
storage and processing capability are extremely limited in comparison. Sim-
ilarly, the insertion time can be further dropped to O(z log y) expected time
without affecting space requirements, if only the z most significant nonzero
digits are inserted, but the expected estimate may be too low by a factor of
(1 + (y − 1)/(yz − 1)).

So far, we have only discussed two aggregates, COUNT and SUM, and their
approximation with non-negative integer inputs. These techniques can also be

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:17

extended to other aggregate functions beyond summation and counting. For
example, AVG can also be computed directly from COUNT and SUM sketches.
The second moment can be computed as an average of the squares of the items,
and then combined with the average of the items, to compute the variance and
standard deviation.

While this section has focused upon approximating the sum of integers, these
techniques can be extended to other data types. For example, the extension to
handle fixed point numbers is trivial. Similarly, products can be approximated
by summing logarithms in fixed point notation, with a corresponding loosening
of the error bounds. Summing floating point numbers is also possible at greater
expense, but we do not provide full details here.

A natural question is how to handle duplicate keys with different values.
Algorithm 2 will account for only distinct key/value pairs. The sketch can also
be modified to account only the maximum value associated per key, by seeding
the hash functions using only ki and not ci. This value is known as the max-
dominance norm [Cormode et al. 2003; Stoev et al. 2007].

4. FREQUENCY COUNTING SKETCHES

We now discuss how the FM sketches can be used to make the Count-Min
(CM) sketch duplicate-insensitive and hence suitable for multipath in-network
aggregation. The CM sketch accurately estimates the frequency of appearances
of stream elements in one pass and with small space proposed by Cormode and
Muthukrishnan [2005a]. In a subsequent work [Cormode and Muthukrishnan
2005b], the same authors extended the CM with FM sketches as an example
of a cascading sketch (composition of a sketch inside another sketch). In this
section, we provide the description of the CMFM sketch and we provide a new
and more detailed analysis of the error and failure probabilities of the CMFM
sketch.

4.1 CM Sketch Basics

Let M = {x1, x2, x3, . . . } denote a multiset of elements from a domain [1, D].
The CM sketch is a simple randomized data structure that can estimate the
frequency of any element x in M , and consists of a k × d matrix of counters.

CM =

⎡
⎢⎢⎢⎣

c1,1 c1,2 . . . c1,d
c2,1 c2,2 . . . c2,d

...
...

. . .
...

ck,1 ck,2 . . . ck,d

⎤
⎥⎥⎥⎦

To estimate the frequency of a given element, the CM sketch uses a simple hash-
ing scheme with a set of k independent hash functions h1, . . . , hk : [D] → [d],
one hash function per row of the matrix. Each hash function maps a given ele-
ment to a specific counter of the filter on a specific row. The matrix is initialized
by setting all counters to zero. Then, hi(·) is evaluated for all x ∈ M , and the
counters CMx[i], 1 ≤ i ≤ k (where CMx[i] = {CM[i, j] : j = hi(x)}) are in-
creased by 1. If the hash functions are independent, then the probability that
two elements will hash to exactly the same set of counters is equal to 1

dk .

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:18 • J. Considine et al.

Given this structure, the estimated frequency of x is given by the formula
|̂x| = mini {CMx[i]}. Intuitively, the minimum of any counter yields a frequency
estimate that is the least affected by hash function collisions of other elements
on the same counters. The CM sketch imposes specific constraints on k and d ,
in order to give tight guarantees on the estimation accuracy. In particular, the
following theorem holds.

THEOREM 5. For user-defined constants ε, δ ∈ (0, 1], and a CM sketch with
d = �e/ε�, k = �ln (1/δ)� let |x| be the exact frequency of element x ∈ M, and |̂x|
be the estimated frequency computed using the sketch. Then, |̂x| ≥ |x|, and with
probability 1 − δ : |̂x| ≤ |x| + ε|M |.

Note that in the preceding theorem, |M | = ∑D
i=1 |xi|, where |xi| is the fre-

quency of element xi in M . It can be shown that the CM sketch has the following
properties.

PROPERTY 3. The CM sketch of the union of two multisets is the simple ma-
trix addition of their individual CM sketches; that is, CM(M1 ∪ M2)[i, j] =
CM(M1)[i, j] + CM(M2)[i, j].

PROPERTY 4. The CM sketch is order-insensitive. CM(M) is entirely de-
termined by the items of M. Ordering of insertions does not affect the
structure.

4.2 Design and Theory of Duplicate-Insensitive CM Sketches

Apart from order insensitivity, we would ideally like the CM sketch to be
duplicate-insensitive in terms of the union operation. Notice that double-
counting a certain CM sketch into a union operation many times will yield
errors in estimated frequencies that grow with the total number of duplicate
additions that occurred. A similar effect occurs when double-counting duplicate
elements that have been inserted across different CM sketches.

The simplest approach to make CM sketches duplicate-insensitive is to re-
place every matrix counter with an FM sketch, and take advantage of the du-
plicate insensitivity of these sketches [Cormode and Muthukrishnan 2005b].
Essentially, we use the FM sketches to estimate the magnitude of each counter,
that is, to estimate how many elements have been added to the specific FM
sketch. We call this construction the CMFM sketch, for which the following
properties hold.

PROPERTY 5. The CMFM sketch of the union of two multisets is the simple
matrix addition of their individual CMFM sketches, where each element ad-
dition is given by the bit-wise OR of the corresponding FM sketches; that is,
CMFM(M1 ∪ M2)[i, j] = CMFM(M1)[i, j] ∨ CMFM(M2)[i, j].

PROPERTY 6. The CMFM sketch is duplicate-insensitive.

Given the structure of the CMFM, we need to theoretically derive the error
bounds for the estimated frequencies, based on the individual errors intro-
duced both by the FM sketch approximations and the CM sketch hash function
collisions. To do this, we need to use the following theorem about the error

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:19

guarantees of the FM sketches that can be derived from Bar-Yossef et al. [2002]
and Ganguly et al. [2003].

THEOREM 6. Given parameters ε and δ, we can create an FM sketch with size
O(1

ε2 log(1/δ) log(N)) bits, that can report the number of N unique values in a
multiset M with error at most εN and probability of failure at most δ. The FM
sketch can be updated in time O(log(1/δ)).

Based on the preceding theorem, next we show the following bounds on the
error of the CMFM sketch.

THEOREM 7. For a CMFM sketch with d = �(1 + ε f)e/εc�, k = �ln (1/δc)�
and user-defined constants ε f , εc, δ f , δc, let |x| be the exact frequency of element
x ∈ M, and |̂x| be the estimated frequency computed using the sketch. Then,
with probability at least (1− δ f)k : |̂x| ≥ (1− ε f)|x| and with probability at least
(1 − δ f)k(1 − δc) : |̂x| ≤ (1 + ε f)|x| + εc|M |.

PROOF. The lower bound can be proven as follows. Let X [i] denote the set of
elements that hash to exactly the same FM sketch as element x on row i. Then,
|X [i]| quantifies the total number of insertions to FM sketch CMx[i], which
implies that by construction the FM sketch CMx[i] gives the estimate |X̂ [i]|.
Also, let |x| denote the total number of insertions of x in the sketch. Clearly,
|X [i]| accounts for the |x| insertions plus the collisions of other elements to the
same FM. Let the estimation accuracy of each individual FM sketch be bounded
by

(1 − ε f)|X [i]| ≤ |X̂ [i]| ≤ (1 + ε f)|X [i]|
with probability 1 − δ f (Theorem 6). Then,

CMx[i] ≥ (1 − ε f)|X [i]|
≥ (1 − ε f)|x|

with probability 1 − δ f . By using

|̂x| =
k

min
i=1

{CMx[i]}
as the estimation function, the lower bound follows. Notice that the lower bound
succeeds with probability (1 − δ f)k , namely, the probability that the estimates
of all FM sketches will be correct.

To prove the upper bound, assuming perfect hash functions it holds that

P = Pr[hi(x) = hi(y)] ≤ 1
d

.

Let |Y [i]| denote the total number of collisions of elements other than x on
CMx[i]. Then

E{|Y [i]|} =
∑
y �=x

P · y ⇒ E{|Y [i]|} ≤ 1
d

|M |.

Thus, by using Pr[A > B] ≤ Pr[A′ > B], forA < A′, and Markov’s inequality,

Pr[|̂x| > (1 + ε f)|x| + εc|M |] =
ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:20 • J. Considine et al.

Pr[∀i, CMx[i] > (1 + ε f)|x| + εc|M |]

= Pr[∀i, |X̂ [i]| > (1 + ε f)|x| + εc|M |]

≤ Pr[∀i, (1 + ε f)|X [i]| > (1 + ε f)|x| + εc|M |]

≤ Pr[∀i, (1 + ε f)(|x| + |Y [i]|) > (1 + ε f)|x| + εcd E{|Y [i]|}]

= Pr[∀i, |Y [i]| >
εcd

1 + ε f
E{|Y [i]|}] ≤

(
1 + ε f

εcd

)k

.

Now, by setting e = (εcd)/(1 + ε f), we get

Pr[|̂x| ≤ (1 + ε f)|x| + εc|M |] > 1 − e−k .

Thus, δc = e−k ⇒ k = ln (1/δc). The preceding holds only if none of the
FM sketches fails, thus the estimation will succeed with probability (1 − δ f)k

(1 − δc).

Since the success of the CMFM sketch depends heavily on the success of the
individual FM sketches, for the given analysis, it is essential to guarantee that
the failure probability of FM sketches is low, in order to limit the factor of the
exponent k. In practice, for a failure probability δc = 1% the CM sketch requires
k = �ln (1/0.01)� = 5 hash functions. If the FM sketches fail with probability
δ f = 1% as well, then the total probability of failure for the CMFM sketch, from
Theorem 7, is 5% and 6% for the lower and upper bound, respectively.

5. QUANTILE ESTIMATION SKETCHES

We now demonstrate how to extend a quantile estimation technique to be
duplicate-insensitive for use in sensor network environments. The Quantile
Digest (QD) [Shrivastava et al. 2004] is an efficient ε-approximation technique
for estimating arbitrary quantiles over data produced by a number of sensors.
The idea is to maintain a small summary at each sensor, and to combine indi-
vidual summaries in order to answer quantile queries on the union of the data,
with relative error at most ε.

5.1 Quantile Digest Basics

Given a multiset M with values in [1, D] and a fraction q ∈ (0, 1), the qth quan-
tile of M is the value with rank �q|M |� in the sorted sequence of values in M
(the MEDIAN is a special quantile, with q = 0.5). If M is known in full, then
quantile computation can be done very efficiently; for example, by the classical
linear-time algorithm [Floyd and Rivest 1975]. On the other hand, if M is dis-
tributed over a number of sources, or if the size of M is too large to be retained
in full (e.g., in streaming applications), then exact computation of quantiles
is not an easy problem. In the first case, special distributed algorithms need
to be used [Greenwald and Khanna 2004]. In the second case, exact quantile
computation is not feasible at all [Munro and Paterson 1980]. For these rea-
sons, various approximation algorithms that work by summarizing the data

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:21

Fig. 2. Building a quantile digest. The complete conceptual tree is shown here. Gray nodes corre-
spond to the actual sketch. For this example k = 5.

appropriately have been proposed for quantile computation. We say that an al-
gorithm computes an ε-approximate quantile if the estimated answer has rank
between �(q − ε)|M |� and �(q + ε)|M |�.

QD uses a predefined binary tree structure to capture the distribution of
values in M over the domain [1, D]. Every node of the tree is associated with a
tuple 〈N , RN , CN 〉, where N is a unique node identifier, RN is a range of values
from [1, D] (where Rmin

N , Rmax
N will be used to denote the upper and lower bound

of the range, respectively), and CN is a tally of the number of elements of M
with values in RN . Values are assigned to leaves in a sorted order from left
to right. Nodes in higher levels of the tree correspond to dyadic ranges over
the values of the lower levels. The root of the tree corresponds to the whole
domain. In addition, node identifiers are assigned by following a sequence that
is equivalent with a postorder traversal of the tree. An example is shown in
Figure 2(a), for the domain of values [1, 8]. The identifiers of the nodes and the
frequency of each value are also shown.

This binary tree is conceptually maintained locally by all the sensors. In
practice, every sensor needs to instantiate only a subset of the tree nodes at a
time, and transmit this subset to the destination. The subset constitutes the
actual QD sketch. Notice that a QD sketch that consists of all the leaves is
equivalent to an equiwidth histogram with bucket size 1, which can be used
to provide exact solutions. To guarantee approximate answers within an error
threshold and decrease the size of the sketch we need to choose which nodes
to instantiate and include in the QD. This is governed by the following two
conditions:

CN ≤ �|M |/k�, if N is not a leaf (1)

CN + CNp + CNs > �|M |/k� (2)

where N , Np, and Ns are a node, the node’s parent, and its sibling, respectively,
and k is a user-defined parameter that controls the accuracy and the compres-
sion ratio of the sketch. Eq. (1) can be used to guarantee special error bounds
on QD, since every node cannot increase the error of the estimation by more

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:22 • J. Considine et al.

than �|M |/k�. Eq. (2) implies that if two adjacent leaves have a low count, they
are compressed to save space by preserving only their parent.

A QD is constructed as follows. First, we compute the frequency CN of every
leaf. We do not instantiate any index nodes, but we assume that for these nodes
CN = 0. Next, we propagate values up the tree as follows: If a leaf and its
sibling violate Eq. (2) we merge the two leaves, instantiate their parent, set
CNp = CN + CNs , and discard N , Ns. We continue the same process left to
right and bottom to top, until no more nodes can be merged. At the end, all
nodes that have not been discarded constitute the QD. An example is shown in
Figures 2(a)–(d) for |M | = 15 and k = 5. The quantile digest at each step of the
compression algorithm consists of the gray nodes. The final QD sketch is the
following: 〈d , 4〉, 〈e, 6〉, 〈 j , 2〉, 〈m, 2〉, 〈o, 1〉.

Merging QDs is straightforward. Starting from the complete conceptual bi-
nary tree with all counters initialized to 0, incoming QD nodes from other
sources are added to their respective counters in the tree. Then, Eqs. (1) and
(2) are applied on the resulting tree, where |M | = |M1| + |M2| + . . . is the car-
dinality of the union of the sets corresponding to the incoming QDs. Answering
quantile queries on any QD requires first sorting the nodes in increasing iden-
tifier order. Now, given q ∈ (0, 1), we start adding node counters from left to
right in the sorted order, until the sum becomes larger than �q|M |�, after some
node N , at which point we know that at least �q|M |� values are included in
the range [1, Rmax

N]. For the qth quantile of M we report the value Rmax
N . In the

previous example the computation yields node e with value 4 as the estimated
MEDIAN.

The following hold for quantile digests [Shrivastava et al. 2004].

LEMMA 5. For a QD with compression factor k, the maximum error in CN

for any node is log2 (D)
k |M |.

THEOREM 8. A QD Q can answer any quantile query with error εq such that
εq ≤ 3 log2 (D)

|Q | , where |Q |, the number of nodes in the digest, satisfies |Q | < 3k,
given compression factor k.

PROPERTY 7. Given n QDs: Q D1, . . . , Q Dn, built on multisets of values
M1, . . . , Mn, each with maximum relative error εq, the merging algorithm com-
bines them into a QD for M∪ = M1 ∪ . . . ∪ Mn with the same relative error.

5.2 Duplicate Insensitivity

The QD sketch is clearly not duplicate-insensitive. For example, merging
QD(M) with itself produces a new QD for the larger multiset M ∪ M . As before,
to distinguish between true duplicate values introduced by multipath routing
and values reported by different sensors that happen to be identical we cre-
ate a triplet for each value in each sensor (sensor id, value id, value). (Here,
sensors may report multiple values, thus the use of multisets, and where the
multiset in each sensor is a set of triplets.) The goal now is to compute the quan-
tiles using the values in all triplets, but with each triplet contributing exactly
once.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:23

Algorithm 3. COMPRESSQD(Q, m, k)

1: l = log(D) − 1 // l initialized to the leaf level;
2: while l > 0 do
3: for all u in level l do
4: Compute FMt = Merge(FMu, FMup, FMus)
5: if FMt < � m

k � then
6: FMup = FMt

7: delete u and us
8: end if
9: end for
10: l = l − 1
11: end while

We can again utilize FM sketches to make a combined QDFM sketch that
is duplicate-insensitive. We initially create the leaf nodes of the QD by using
an FM sketch for all nonempty nodes and inserting each value once to the
corresponding sketch. Then, we use the Algorithm 3 [Shrivastava et al. 2004]
to compress the digest. In this algorithm, m is the total number of values in
the digest and k the compression ratio. We process the nodes level by level. For
each node in a given level, we first merge its FM sketch with the FM sketches
of its parent (up) and sibling node (us). Then, we use the sketch to estimate
the total number of items in the three nodes and if it is smaller than �m

k �, we
merge the u and us with the parent node. This continues until it reaches the
root level. To merge two (or more) digests, we merge the FM sketches of the
same nodes in the trees and then we apply the CompressQD algorithm. Note
that merging a QDFM sketch with itself produces the original QDFM sketch.
Also, if duplicate values are inserted in the FM sketches across sensors, they
will be counted only once. Therefore we have the next property.

PROPERTY 8. The QDFM sketch is duplicate-insensitive.

Let a QDFM sketch {〈A, FMA〉, 〈B, FMB〉, . . . }, where each FMN is an estima-
tor for CN , with (1−ε f)CN ≤ ĈN ≤ (1+ε f)CN . To find the qth quantile of M , we
iteratively combine FM sketches from left to right (in the sorted identifier order)
using the OR operation on the bit vectors, until ĈA∪...∪N ≥ q|M | (where ĈA∪...∪N
is the estimation produced by the combined FM sketch FMA ∪ . . . ∪ FMN). We
report as the qth quantile of M , the value Rmax

N .
Unfortunately, we cannot give the same analytical guarantees as the origi-

nal QD sketch. The main reason is that because of the existence of duplicate
triplets when we merge two QDFMs, we may create a new node that does not
satisfy Eq. (1). Therefore, we can use the QDFM as a heuristic to estimate quan-
tiles inside a sensor network. Since it does not provide error guarantees as the
original QD, it should be used with care and only when other alternatives are
not possible or are too expensive for use in practice.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:24 • J. Considine et al.

6. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of our methods using the TAG simu-
lator [Madden et al. 2002]. In the TAG simulator, each node aggregates results
received from its children with its own reading, and then sends the aggregate
to one or more of its parents. Any node within broadcast range which is at a
lower level (closer to the root) is considered a candidate parent. For our basic
experimental network topology we used a regular 30 × 30 grid with 900 sen-
sors. The communication radius allowed the nearest eight grid neighbors to
be within transmission range, and the default link loss rate was 5%. The root
node was always at the center of the grid. Figure 1 illustrates an example of
7×7 grid. In addition, we extended the basic network topology to more realistic
settings, using road networks taken from the U.S. Census Bureau TIGER/Line
datasets [U.S. Census Bureau 2009]. We randomly placed sensors on the road
network by using various distributions described next. First, we evaluate the
performance of the FM sketches for count and sum aggregate queries. Then, we
evaluate the CMFM and QDFM sketches for frequency counting and quantile
estimation queries, respectively.

6.1 Count and Sum Queries

We implemented and compared the following methods.

—TAG1: the main strategy of TAG [Madden et al. 2002] (each sensor sends its
aggregate to a single parent).

—TAG2: the “fractional parents” strategy of TAG [Madden et al. 2002] de-
scribed in Section 2.2.

—SKETCH: the strategy described in Section 2.3 using our proposed duplicate-
insensitive sketches.

—LIST: the aggregate consists of an explicit list of all the items in the aggregate
with any duplicates removed. These lists are sent to all parents.

TAG1 and TAG2 are previous competitors. LIST is a straightforward solution.
For all results we average over a total of 500 simulations and present in the
graphs the mean along with the 5th and 95th percentiles.

We performed simulations for estimating the total number of active sensors
(a count query) and the sum of values reported by these sensors (a sum query
where sensors produce values in [1, 100] uniformly at random), on the regular
grid topology. We evaluated all of the aforementioned aggregation strategies in
order to expose their advantages and disadvantages.

First, we measured the approximation accuracy of the proposed sketches as
a function of the maximum message size per transmission. In addition, we mea-
sured the communication overhead of these approaches in order to assess the
accuracy versus power-consumption trade-offs. Then, we evaluated the robust-
ness of all aggregation strategies under varying link loss and node loss rates.
We also performed scaling experiments for increasing sensor network sizes.
Finally, we ran the same experiments on more realistic synthetic topologies,
rather than regular grids.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:25

Fig. 3. Estimation accuracy of summation FM sketch as a function of sketch size.

Table I. Communication Cost for Sum Queries

Total Messages
Strategy Bytes Sent Received
TAG1 1800 900 900
TAG2 1800 900 2468
SUM FM SKETCH 10843 900 2468
LIST 170424 900 2468

The results for the approximation accuracy of FM sketches as a function of
sketch size for a sum query are shown in Figure 3. We run a one-shot sum
query that aggregates the values reported by all the sensors during one epoch
and average over 500 runs. We use the compression technique of Palmer et al.
[2002] that reduced the size of the estimator by about 60% to 70%. As expected,
the larger the sketch size (hence, the larger the number of bitmaps per FM
sketch), the smaller the relative error observed for the estimated query results.
These results are in line with the guarantees that we get for the analysis of the
FM sketches. The standard error that we get from the experiments is a little
bit better than the expected 0.78/

√
m. In the rest, we use 20 bitmaps of 16 bits

each for the FM sketches (approximately 100 bits per compressed FM sketch),
which provides a good accuracy versus communication-overhead trade-off for
our setting.

Table I shows the total number of bytes transmitted along with the total
number of messages sent and received (assuming no losses). For the TAG1 and
TAG2 approaches it is assumed that every value transmitted is 16 bits. LIST
sends a number of 〈id , value〉 pairs per message, using 32 bits per pair (two
bytes for the id and two bytes for the associated value). As expected, the TAG
strategies send the least amount of data, while LIST is the most expensive. The
SKETCH strategy has approximately 6 times larger communication overhead
than TAG, and 16 times smaller than LIST. Notice here that the communication
cost of the SKETCH strategy can be further decreased at the cost of approxima-
tion accuracy by reducing the number of bitmaps used, as Figure 3 illustrates.
Nevertheless, the SKETCH strategy leverages improved approximation quality
for somewhat increased communication cost when compared with TAG, espe-
cially for low to medium loss rates, as will become clear shortly. Very similar
observations were made for count queries, hence these results are omitted.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:26 • J. Considine et al.

Fig. 4. Performance of aggregation strategies as a function of link and node loss rate.

Fig. 5. Performance of aggregation strategies for varying network sizes.

Next, we evaluate the robustness of the four aggregation strategies as a
function of link loss rates. We use a uniform probability of failure for all the
links, meaning that a message might fail to be delivered to its intended recipient
with a preset probability. We evaluate a count query in this experiment. Notice
here that the exact answer to this should be equal to the number of sensors in
the grid, namely, 900.

Figure 4(a) plots the results. We can see that the SKETCH and LIST strate-
gies outperform the TAG strategies for low, medium, and high loss rates. Only
when the loss rate is close to zero are TAG approaches better than the SKETCH,
since these approaches provide exact results whereas the SKETCH provides
approximate results. As the loss rate increases, the answers returned by LIST
and SKETCH strategies degrade slowly, while those returned by the TAG ap-
proaches deteriorate at a much higher rate. It should be noted here that the
answers returned by the SKETCH strategies are different than the results of
the LIST approach because of the use of FM sketches.

Figure 4(b) shows the effect of node losses assuming 5% loss rate. The general
trend is similar to those for link losses, with the only difference being that the
average estimated counts reported decrease at a faster rate. Intuitively, this
happens due to the fact that if a node fails its value is certainly lost, while
for link failures all potential upstream links of a specific node must fail for its
value to be lost.

We also tested the aggregation strategies for sensor networks of varying
sizes. Figure 5 plots the results. Despite the fact that the loss rate is being
held constant, the TAG strategies perform poorly as the network size increases.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:27

Fig. 6. Performance of aggregation strategies for random sensor placements as a function of link
loss rates.

Fig. 7. Road networks used in our experiments.

Meanwhile, the FM sketch maintains an almost constant average relative error,
around 13%. Similar results were observed for sum queries.

The next experiment evaluates the different strategies for random sensor
placements. For these experiments we doubled the communication radius to
compensate for sparse regions of connectivity. Figure 6 shows the estimated
count as a function of link loss rate. Clearly, the results show that the basic
trends of all strategies remain similar to the ones observed for uniform grid
placements.

Finally, we replace the simplistic network topology discussed before with
more realistic settings, namely with sensors that are placed on real road net-
works. Given a road network, a number of data points are generated uniformly
at random on the graph’s edges. The goal is to simulate possible sensor lo-
cations on traffic lights and other sites. For all experiments we used a large
enough communication radius in order to ensure the connectivity of all sensors
in the network. Some real road networks used in our experiments are shown
in Figures 7(a) and 7(b), from various metropolitan areas. Placements of 900
sensors on these road networks are shown in Figures 8(a) and 8(b).

We performed the same set of experiments for the real road networks as
with the grid topology, observing very similar trends in all cases. Indicatively, in
Figure 9(a) we show the results for the performance of all aggregation strategies
as a function of link loss rates for count queries. Once again, the clear winners

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:28 • J. Considine et al.

Fig. 8. The placement of 900 sensors on these networks.

Fig. 9. Experiments on road network topologies.

are the SKETCH-based strategies and LIST, estimating the number of sensors
with decent accuracy even for low to medium link losses. Figure 9(b) presents a
scalability experiment for increasing the network size from 400 to 3600 nodes
while holding link loss rate equal to 5%. The results are similar to the grid
topology experiment.

6.2 Frequency Counting

We turn our attention to duplicate-insensitive sketch constructions for fre-
quency estimation. We use the CMFM sketch for estimating value frequencies
in a sensor network. Once again we use a 30 × 30 uniform grid of sensors. We
evaluate the accuracy of the sketches by estimating the frequency of the top 25
most frequent data values produced by all the sensors during one epoch and
averaging the results over all epochs (for a total of 30 epochs). Each sensor
produces 1000 values per epoch in range [0, 100000] using a Zipf distribution
with skew equal to 1.2.

The only available alternative for estimating frequencies on a sensor net-
work is the random sampling approach [Nath et al. 2004]. Random sampling
is not expected to work well for estimating element frequencies. In our experi-
ments we implemented this approach and ran it for all simulations. The average

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:29

Fig. 10. Frequency estimation error as a function of sketch size.

error of the technique was consistently above 90%, hence we refrain here from
including it in the graphs for clarity. Other approaches in Nath et al. [2004]
have been proposed for identifying heavy hitters, but these are not as general
as frequency counting and we refrain from delving into further details.

First, we evaluate the accuracy of the CMFM sketch as a function of sketch
size. The size of the sketch is equal to the number of hashes times the number
of FM sketches per hash times the size of each FM sketch. For this experiment
we do not use any compression algorithms for the FM sketches to be able to
tune the size of the CMFM sketch more accurately. In general, compression
would reduce the overall size of the sketch to 30% of the uncompressed version,
according to our measurements. In Figure 10(a) we plot the accuracy of the
sketch as a function of the number of bitmaps used per FM sketch. We run the
experiment using from 100 to 500 FM sketches (counters) per hash function,
and 2 hash functions per sketch. A good trade-off between sketch size and
estimation accuracy with small variance is using 40 bitmaps per FM and 100
FMs per hash. This is more clearly seen in Figure 10(b) where we plot the same
results, this time showing the size of each sketch in KBytes. It is clear from
the graphs that increasing the number of FMs per hash does not help improve
accuracy. Nevertheless, it does have a positive impact on reducing variance
(small error bars have been removed from the figure not to clutter the graph).
Also, we would like to point out that the results for the FM sketches are better
than the guarantees provided based on Theorem 6. Thus, the results of CMFM
are better than the expected results based on the analysis in Section 4.

The next graphs show the estimation accuracy of the sketch as the link loss
probability between child/parent sensors and the node loss probability increase.
In this case we compute the estimation error with respect to the exact answer
that would have been received at the sink, assuming zero losses. As expected,
the estimation error increases proportionately as the link losses increase, since
more and more client messages never reach any of their designated parent sen-
sors (see Figure 11(a)). We observe similar results as the node loss probability
increases (see Figure 11(b)), the only difference being that the error increases
at a steeper rate since the failure of a single node results in complete loss of its
data, unlike link losses where all links need to fail simultaneously for the data
to be lost.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:30 • J. Considine et al.

Fig. 11. Frequency estimation error as a function of link and node losses.

Fig. 12. Average error as a function of sketch size for uniformly distributed data.

6.3 Quantile Estimation

Finally, we evaluate the quantile estimation sketches. We use a 30 × 30 sensor
grid, where each sensor generates 1000 values in [10, 100010] (we avoid small
values here, since we are estimating quantiles, and small numbers will skew
relative errors significantly even for small absolute errors). Here, we compute
the estimation accuracy of the sketch by estimating the 10th percentile, the
median, and the 90th percentile of all the values generated by the sensors in
a single epoch, and averaging over all epochs (for a total of 30 epochs). We
run two experiments, one with randomly distributed data, and one with a Zipf
distribution, with parameter 1.2. We choose the compression factor k equal to
20. Experiments showed that this is a good compression ratio for our datasets.
We compare our technique against the random sampling approach [Nath et al.
2004].

Figure 12 plots the estimation accuracy of the QDFM sketch and random
sampling as a function of sketch size, for uniformly distributed values. Clearly,
with a 5KByte sketch the estimation error of QDFM is below 10% for all quan-
tiles. Random sampling yields 40% errors for the same sample size for the 50th
and 90th percentile, while it completely fails to estimate values close to the
minimum.

The accuracy of the sketches for increasing link and node loss probabilities is
shown in Figures 13(a) and 13(b). Random sampling is unaffected by the losses
at an almost constant, close to 40% error. QDFM is very resilient for up to 25%

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:31

Fig. 13. Quantile estimation error as a function of link and node losses for uniformly distributed
data.

Fig. 14. Average error as a function of sketch size for skewed data distribution.

losses for the 10th and 50th percentile, but fails after 15% losses for the 90th
percentile. Larger quantiles are harder to estimate using the QDFM due to the
additive error introduced by the FM sketches as we aggregate nodes during
quantile estimation (the more nodes we merge, the larger the error becomes).

Finally, we run experiments using skewed data distributions. We compare
QDFM with random sampling in Figure 14. We can observe that both tech-
niques can very accurately estimate the 10th and 50th percentile, since smaller
values are the most frequent comprising the heavy tail of the distribution. Even
here, though, QDFM is more accurate than sampling (0% versus 0.01% relative
error). Both sketches have very large estimation error for the 90th percentile
(up to 30% for sampling), which is expected since these are rare values in the
data distribution. Nevertheless, the QDFM is still better than sampling. The
techniques work similar to the uniform distribution case for link and node
losses.

7. DISCUSSION

The sketches that we presented in this article can be used to provide approx-
imate answers to several important aggregation queries in a sensor network
system. It is shown, both analytically and experimentally, that the distinct
and summation FM sketches provide a good trade-off between accuracy and
communication cost on a sensor network that exhibits low or medium link

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:32 • J. Considine et al.

and node losses. In particular, for loss rates between 1% to 30% the aforemen-
tioned sketches provide a good level of accuracy on the estimation of SUM and
COUNT queries. However, the accuracy of these methods decreases for higher
loss rates (although at a slower rate than other methods). For sensor networks
with very low loss rates and stable topologies, TAG-based approaches are the
best alternative. In cases for which a single network exhibits areas with high
losses and other areas with limited or no losses, these two methods can be com-
bined efficiently [Manjhi et al. 2005]. For the estimation of frequent values in
a lossy sensor network, the CMFM sketch seems to be the best alternative.
In addition, it provides strong probabilistic guarantees that are validated by
our experimental evaluation. However, if the loss rate surpasses 25%, the ac-
curacy of the estimator starts to drop. Therefore, we again recommend the use
of CMFM for the case of low to medium link and node failures. Finally, for es-
timating quantiles in a sensor network with no losses, the q-digest provides a
very good approximate solution. For the case of losses, the QDFM sketch can be
used, but without analytic guarantees on the quality of the results. Indeed, in
our experimental study we found cases where the QDFM has very high error,
even under medium loss rates. Devising a duplicate-insensitive variant of the
QDFM sketch with comparable analytic and creating performance guarantees
to the basic sketch is an important open problem.

8. CONCLUSIONS AND FUTURE WORK

We have presented new methods for approximately computing duplicate-
sensitive aggregates across distributed datasets. Our immediate motivation
comes from sensor networks, where energy consumption is a primary concern,
faults occur frequently, and exact answers are not required or expected. An ele-
gant building block which enables our techniques is comprised of the duplicate-
insensitive sketches of Flajolet and Martin, which give us considerable freedom
in our choices of how best to route data and where to compute partial aggre-
gates. In particular, use of this duplicate-insensitive data structure allowed us
to make use of dispersity routing methods to provide fault tolerance that would
be inappropriate otherwise. Of course, our approach does not come for free.
Since we duplicate results, the power consumption of our technique is higher
than single-path techniques. It would be interesting to investigate the trade-
off between energy consumption and robustness to node and link failures using
appropriate network models [Chakrabarti et al. 2007]. Furthermore, certain
applications may require exact results or the original readings of the sensor
and not aggregate results. In that case, any approximate in-network aggrega-
tion method cannot be applied.

The implications of these results reach beyond sensor networks to other
unreliable systems with distributed datasets over which best-effort aggregate
queries are posed. Examples include estimating the number of subscribers par-
ticipating in a multicast session, or counting the number of peers storing a
copy of a given file in a peer-to-peer network. In these settings, nodes are less
resource-constrained than in sensor networks, but the problems are still diffi-
cult due to packet loss and frequent node arrivals and departures.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:33

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions and S. Madden for providing an early version of the
TAG simulator.

REFERENCES

ADURI, P. AND TIRTHAPURA, S. 2005. Range efficient computation off 0 over massive data streams.
In Proceedings of the International Conference on Data Engineering (ICDE’05), 32–43.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency
moments. In Proceedings of the ACM Symposium on Theory of Computing (STOC’96), 20–29.

BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR, R., SIVAKUMAR, D., AND TREVISAN, L. 2002. Counting distinct
elements in a data stream. In Proceedings of the International Workshop on Randomization and
Approximation Techniques (RANDOM’02), 1–10.

BAWA, M., GARCIA-MOLINA, H., GIONIS, A., AND MOTWANI, R. 2003. Estimating aggregates on a peer-
to-peer network. Tech. rep., Stanford University.

CHAKRABARTI, D., LESKOVEC, J., FALOUTSOS, C., MADDEN, S., GUESTRIN, C., AND FALOUTSOS, M. 2007.
Information survival threshold in sensor and p2p networks. In Proceedings of the Annual Joint
Conference of the IEEE Computer and Communications Societies (InfoCom’07), 1316–1324.

CONSIDINE, J., LI, F., KOLLIOS, G., AND BYERS, J. 2004. Approximate aggregation techniques for
sensor databases. In Proceedings of the International Conference on Data Engineering (ICDE’04),
449–461.

CORMODE, G., DATAR, M., INDYK, P., AND MUTHUKRISHNAN, S. 2003. Comparing data streams using
hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng. 15, 3, 529–540.

CORMODE, G. AND MUTHUKRISHNAN, S. 2005a. An improved data stream summary: The count-min
sketch and its applications. J. Algor. 55, 1, 58–75.

CORMODE, G. AND MUTHUKRISHNAN, S. 2005b. Space efficient mining of multigraph streams. In
Proceedings of the ACM Symposium on Principles of Database Systems (PODS’05), 271–282.

DELIGIANNAKIS, A., KOTIDIS, Y., AND ROUSSOPOULOS, N. 2004a. Compressing historical information in
sensor networks. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 527–538.

DELIGIANNAKIS, A., KOTIDIS, Y., AND ROUSSOPOULOS, N. 2004b. Hierarchical in-network data aggre-
gation with quality guarantees. In Proceedings of the International Conference on Extending
Database Technology (EDBT’04), 658–675.

DELIGIANNAKIS, A., KOTIDIS, Y., AND ROUSSOPOULOS, N. 2007. Bandwidth-Constrained queries in
sensor networks. The VLDB J. 16, 3.

DESHPANDE, A., GUESTRIN, C., MADDEN, S., HELLERSTEIN, J., AND HONG, W. 2004. Model-Driven data
acquisition in sensor networks. In Proceedings of the International Conference on Very Large
Data Bases (VLDB’04), 588–599.

DESHPANDE, A. AND MADDEN, S. 2006. Mauvedb: Supporting model-based user views in database
systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
73–84.

DEVROYE, L. 1986. Non-Uniform Random Variate Generation. Springer.
DURAND, M. AND FLAJOLET, P. 2003. Loglog counting of large cardinalities. In Proceedings of the

European Symposium on Algorithms (ESA’03), 605–617.
FLAJOLET, P. 1990. On adaptive sampling. COMPUTG: Comput. 43.
FLAJOLET, P. AND MARTIN, G. N. 1985. Probabilistic counting algorithms for data base applica-

tions. J. Comput. Syst. Sci. 31, 2, 182–209.
FLOYD, R. W. AND RIVEST, R. L. 1975. Expected time bounds for selection. Commun. ACM 18, 3,

165–172.
GANESAN, D., GOVINDAN, R., SHENKER, S., AND ESTRIN, D. 2001. Highly-Resilient, energy-efficient

multipath routing in wireless sensor networks. ACM Mobile Comput. Commun. Rev. 5, 4, 11–25.
GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R. 2003. Processing set expressions over continuous

update streams. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 265–276.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

6:34 • J. Considine et al.

GAROFALAKIS, M., HELLERSTEIN, J. M., AND MANIATIS, P. 2007. Proof sketches: Verifiable in- network
aggregation. In Proceedings of the International Conference on Data Engineering (ICDE’07), 996–
1005.

GIBBONS, P. AND TIRTHAPURA, S. 2001. Estimating simple functions on the union of data streams.
In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, 281–291.

GRAY, J., CHAUDHURI, S., BOSWORTH, A., LAYMAN, A., REICHART, D., VENKATRAO, M., PELLOW, F., AND

PIRAHESH, H. 1997. Data cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data Mining Knowl. Discov. 1, 1, 29–53.

GREENWALD, M. AND KHANNA, S. 2004. Power-Conserving computation of order-statistics over
sensor networks. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS’04), 275–285.

HORTON, M., CULLER, D., PISTER, K., HILL, J., SZEWCZYK, R., AND WOO, A. 2002. Mica, the commer-
cialization of microsensor motes. IEEE Sensors J. 19, 4, 40–48.

Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., and Silva, F. 2003. Directed dif-
fusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11, 1, 2–16.

KAMRA, A., MISRA, V., AND RUBENSTEIN, D. 2007. Counttorrent: Ubiquitous access to query ag-
gregates in dynamic and mobile sensor networks. In Proceedings of the SIGOPS International
Conference on Embedded Networked Sensor Systems (SenSys’07), 43–57.

KEMPE, D., DOBRA, A., AND GEHRKE, J. 2003. Gossip-Based computation of aggregate information.
In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’03), 482.

KOTIDIS, Y. 2005. Snapshot queries: Towards data-centric sensor networks. In Proceedings of the
International Conference on Data Engineering (ICDE’05), 131–142.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2002. Tag: A tiny aggregation
service for ad-hoc sensor networks. ACM SIGOPS Oper. Syst. Rev. 36, SI, 131–146.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2003. The design of an acquisi-
tional query processor for sensor networks. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 491–502.

MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2005. Tinydb: An acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30, 1, 122–173.

MANJHI, A., NATH, S., AND GIBBONS, P. B. 2005. Tributaries and deltas: Efficient and robust aggre-
gation in sensor network streams. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 287–298.

MUNRO, J. I. AND PATERSON, M. 1980. Selection and sorting with limited storage. Theor. Comput.
Sci. 12, 315–323.

NATH, S., GIBBONS, P. B., SESHAN, S., AND ANDERSON, Z. R. 2004. Synopsis diffusion for robust
aggregation in sensor networks. In Proceedings of the International Conference on Embedded
Networked Sensor Systems (SenSys’04), 250–262.

PALMER, C. R., GIBBONS, P. B., AND FALOUTSOS, C. 2002. ANF: A fast and scalable tool for data mining
in massive graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 81–90.

PAPOULIS, A. 1965. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New
York.

PRZYDATEK, B., SONG, D., AND PERRIG, A. 2003. SIA: Secure information aggregation in sensor net-
works. In Proceedings of the SIGOPS International Conference on Embedded Networked Sensor
Systems (SenSys’03), 255–265.

SHARAF, A., BEAVER, J., LABRINIDIS, A., AND CHRYSANTHIS, K. 2004. Balancing energy efficiency and
quality of aggregate data in sensor networks. The VLDB J. 13, 4, 384–403.

SHRIVASTAVA, N., BURAGOHAIN, C., AGRAWAL, D., AND SURI, S. 2004. Medians and beyond: new aggre-
gation techniques for sensor networks. In Proceedings of the SIGOPS International Conference
on Embedded Networked Sensor Systems (SenSys’04), 239–249.

STOEV, S., HADJIELEFTHERIOU, M., KOLLIOS, G., AND TAQQU, M. S. 2007. Norm, point, and distance es-
timation over multiple signals using max-stable distributions. In Proceedings of the International
Conference on Data Engineering (ICDE’07), 1006–1015.

U.S. CENSUS BUREAU. 2009. TIGER/Line datasets. http://www.census.gov/geo/www/tiger/.
WALKER, A. 1977. An efficient method for generating discrete random variables with general

distributions. ACM Trans. Math. Softw. 3, 3, 253–256.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

Robust Approximate Aggregation in Sensor Data Management Systems • 6:35

YAO, Y. AND GEHRKE, J. 2002. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec. 31, 3, 9–18.

YAO, Y. AND GEHRKE, J. 2003. Query processing in sensor networks. In Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR’03).

YE, F., ZHONG, G., LU, S., AND ZHANG, L. 2005. Gradient broadcast: A robust data delivery protocol
for large scale sensor networks. ACM Wireless Netw.11, 3, 285–298.

ZHAO, J., GOVINDAN, R., AND ESTRIN, D. 2003. Computing aggregates for monitoring wireless sensor
networks. In Proceedings of the IEEE International Workshop on Sensor Network Protocols and
Applications (SNPA’03),139–148.

Received February 2007; revised June 2008; accepted August 2008

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 6, Publication date: April 2009.

