Efficient Join Synopsis Maintenance for Data Warehouse

Zhuoyue Zhao Feifei Li Yuxi Liu
University of Utah
High latency in data analysis pipelines

Typical latency:
- Hours ~ days
- Tens of seconds for single-table queries
- Hours or longer for many-to-many join queries

Latency varies; may need to down-sample

Data source 1
Data source 2
Data source 3
Data warehouse
ETL
Query
Query execution
Query result
Alternatives to cut down latency

Data source 1

Data source 2

Data source 3

Online loading and indexing

Data warehouse

Online sampling and update

Down-sampled query result (aka synopsis)

Pre-defined queries/views

Real-time monitoring & analysis

Latency lowered; no need to post-process to get down-samples

Typical latency: milliseconds ~ seconds

milliseconds ~ seconds

* This picture by oksmith is licensed under CC0
Background and challenges

■ Existing systems work well for single-table/key-join queries
 - E.g., Apache Storm, Apache Flink, ...
 - Sampling is easy to implement on the fly

■ Difficulties with multi-table join queries, especially many-to-many joins
 - Even streaming join can be expensive (when join size is large)
 - Limited sampling/indexing support in existing systems
 - Existing random sampling algorithms for joins
 • have restrictions on the types of join/aggregations (e.g., [1, 2]);
 • depends on assumptions on data distribution (e.g., [3]);
 • or require offline scans (e.g., [4]).

Problem Formulation

Given a pre-specified SPJ query in the following form,

\[
\text{SELECT } * \\
\text{FROM R1, R2, ..., Rn} \\
\text{WHERE } \langle \text{join-preds} \rangle \\
\text{AND } \langle \text{filter-preds} \rangle;
\]

where a \(\langle \text{join-pred} \rangle \) is in the form of,

- \(\text{Ri.A op Rj.B} \)
- \(|\text{Ri.A} - \text{Rj.B}| < d \)

(op is one of <, <=, =, >, >=; d is a constant)

maintain a readily available join synopsis (random sample) in a database with any insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/ replacement, fixed-size w/o replacement or Bernoulli).

- **Baseline: SJ (Symmetric index/hash Join)**
 - builds conventional tree or hash indexes on all the join columns
 - storage cost is \(O(nN) \), where \(N \) is the size of the largest table.
 - incrementally maintains samples over a scan of the full join results upon insertion
 - insertion cost is at least linear to the join size (costly!)
 - rescans join upon deletion to replenish missing samples upon deletion (very costly!)
Overview of SJoin

- Our solution: SJoin (Synopsis Join)
 - features a specialized per-query index based on a *weighted join graph*, which
 - consists of aggregate indexes on all the join columns
 - provides random access and random sampling to join results
 - runs reservoir sampling style algorithms for the specified synopsis type, which
 - only retrieves the selected join results upon insertion or
 - replenishes missing samples using the weighted join graph index upon deletion
 - has a similar storage cost to SJ
 - $O(nN)$ in theory, and within $\pm 25\%$ in experiments
 - has asymptotically lower insertion cost in many-to-many joins
 - $O(2^n d)$ for a chain band-join with a half-width d, compared to $O(2^n d^n)$ in SJ
 - does not rescan join results upon deletion for missing samples
A running example

- Suppose we have a pre-specified SPJ query where there are $n = 5$ tables.

 Query:
  ```sql
  SELECT *
  FROM R1, R2, R3, R4, R5
  WHERE R1.A = R2.A
  AND R2.B = R3.B
  AND R3.D = R5.D;
  ```

 Synopsis type:
 Fixed size synopsis of size 4 w/o replacement
Weighted join graph

<table>
<thead>
<tr>
<th>Row ID</th>
<th>A</th>
<th>Row ID</th>
<th>A</th>
<th>B</th>
<th>Row ID</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Row ID</th>
<th>C</th>
<th>Row ID</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

`R_1` `R_2` `R_3` `R_4` `R_5`
Weighted join graph

\[w_i(t_j) = |\Join (R(j) \setminus R_j) \Join \{t_j\}|, \quad w_i(v_j) = \sum_{t_j \in \mathcal{T}(v_j)} w(t_j) \]

where \(R(j) \) is the set of tables in the subtree at \(R_j \) and \(\mathcal{T}(v_j) \) is the set of tuples that \(v_j \) represent.

e.g., \(w_1(t_1) = |\{t_1\} \Join R_2 \Join R_3 \Join R_4 \Join R_5| \)
Drawing a single random join sample

How to draw random sample from a join with just one random number?

- Fix a join order by choosing any relation R_i as the query tree root
 - Let’s say we choose R_1
 - For simplicity, omit the subscript i in the weight functions for now
 - Sort the tuples in R_j based on its join attribute with its parent

R_1 is arbitrarily ordered, but we order it by its 1st attribute anyway
How to draw random sample from a join *with just one random number*?

- Generate a random number \(l \in [0, W] \), where \(W \) is the join size.
- Starting from the root \(j = 1 \)

 - Step 1: select \(t_j \in R_j \) s.t. \(L = \sum_{t_j'} w(t_j') \leq l < \sum_{t_j' \leq t_j} w(t_j) \); then, let \(l \leftarrow l - L \)
Step 2: for each immediate child R_k, recursively apply step 1 and 2, except that

- Substitute R_j with $R_k[t_j]$, where $R_k[t_j]$ includes all tuples of R_k that join t_j
- Use $l \mod W_k$ instead of l in the search, where $W_k = \sum_{t_k \in R_k[t_j]} w(t_k)$
- Let $l \leftarrow l/W_k$ after each selection
Drawing a single random join sample (cont’d)

How to draw random sample from a join with just one random number?

- Suppose there are \(n \) tables in the join and the largest table has \(N \) tuples.
- All ops can be implemented in \(O(\log N) \) time using \(n \) aggregate balanced trees, including
 - Calculation of \(W \) and \(W_k \)
 - Calculation of \(L \) and \(U \)
 - Selection of “\(l^{th} \)” items (similar to std::lower_bound() but w.r.t. weights rather than sorting keys)

- Generate a random number \(l \in [0, W] \), where \(W \) is the join size
- Starting from the root \(j = 1 \)
 - Step 1: select \(t_j \in R_j \) s.t. \(L = \sum_{t_j' < t_j} w(t_j') \leq l < \sum_{t_j' \leq t_j} w(t_j) \); then, let \(l \leftarrow l - L \)
 - Step 2: for each immediate child \(R_k \), recursively apply step 1 and 2, except that
 - Substitute \(R_j \) with \(R_k[t_j] \), where \(R_k[t_j] \) includes all tuples of \(R_k \) that join \(t_j \)
 - Use \(l \mod W_k \) instead of \(l \) in the search, where \(W_k = \sum_{t_k \in R_k[t_j]} w(t_k) \)
 - Let \(l \leftarrow l/W_k \) after each selection
From random sampling to reservoir sampling

- Reservoir sampling requires a unidirectional iterator over a stream
 - Need to support GetCurrent() or Skip(k)

- The algorithm for drawing a random sample
 - defines a one-to-one mapping from an index number to a join result.
 - For an inserted tuple $t_i \in R_i$, let R_i be the query tree root.
 - The batch of the new join results map from a consecutive range of
 $\sum_{t_i' < t_i} w(t_i') \leq l < \sum_{t_i' \leq t_i} w(t_i')$

- Construct a stream of inserted join result by concatenating the batches
 - Maintain a l number in the current batch
 - Skip(k) is simply increasing l
 - GetCurrent() uses the one-to-one mapping process for random access
Optimizations

- Consolidating the tuples t_i with the same join attribute values into one vertex v_i
 - Reduces the index update cost to $\tilde{O}(h(v_i))$
 - where $h(v_i)$ is the number of reachable vertices from v_i in the weighted join graph
 - $h(v_i) = O(d)$ when the graph has a fixed degree d
 - In contrast, symmetric join involves up to $O(d^n)$ index accesses

- Foreign-key subjoin optimization
 - Combining adjacent vertices that are connected by foreign-key join predicates
 - Save space for storing duplicate weight functions
 - See paper for details
Experiments

10GB of TPC-DS data. A 5-table many-to-many join query. Fixed-size synopsis of size 10,000 w/o replacement. All experiments use AVL trees for indexes. The synopsis is requested after every 50,000 updates.

Fig 1. Insertion only. Fig 2. Insertion + deletion.
Experiments

QX, QY, QZ are run on 10GB of TPC-DS data. QX, QY, QZ involve 5, 5, 7 tables respectively. QB is run on a streaming dataset generated by Linear Road benchmark. It self-joins on 3 copies of the same table.

<table>
<thead>
<tr>
<th></th>
<th>SJoin-opt</th>
<th>SJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>QX (insertion only)</td>
<td>7.4 GB</td>
<td>8.4 GB</td>
</tr>
<tr>
<td>QY (insertion only)</td>
<td>3.9 GB</td>
<td>4.5 GB</td>
</tr>
<tr>
<td>QZ (insertion only)</td>
<td>4.2 GB</td>
<td>5.7 GB</td>
</tr>
<tr>
<td>QY (insertion and deletion)</td>
<td>5.6 GB</td>
<td>4.6 GB</td>
</tr>
<tr>
<td>QB ($d = 300$)</td>
<td>188 MB</td>
<td>151 MB</td>
</tr>
</tbody>
</table>

Table 3: Peak memory usage (base table + index).
Conclusion

- We proposed SJoin, an efficient algorithm for maintaining join synopsis in a dynamically updated data warehouse.
- Theoretical analysis and experiments all show great performance improvements over the best-available baseline.
- We have in-memory implementation of SJoin and SJ in an experimental system.
 - will be open-sourced at https://github.com/InitialDLab

Thank you!
Q&A
Our solution

- **Baseline: SJ (Symmetric index/hash Join)**
 - Build conventional tree or hash indexes on all join columns
 - Incrementally maintain samples over a scan of the *full* join results
 - Up to \(2n - 2\) unique indexes.
 - Storage cost is \(O(nN)\), where \(N\) is the size of the largest table.
 - Maintenance cost is linear to the join size

- **Our solution: SJoin (Synopsis Join)**
 - Build a specialized per-query index based on a *weighted join graph*
 - Support sampling w/ or w/o replacement, or Bernoulli sampling with a *reservoir*
 - Similar storage cost \((O(nN))\) in theory, and within \(\pm25\%\) in experiments
 - Asymptotically lower maintenance overhead in many-to-many joins

- **In-memory implementation of both in an experimental system**
 - Will be open-sourced at https://github.com/InitialDLab
Weighted join graph

- A join graph consists of
 - vertices that represent unique join attribute values
 - edges as a binary predicate indicating whether two join in the query

<table>
<thead>
<tr>
<th>R_1</th>
<th>A</th>
<th></th>
<th>R_2</th>
<th>A</th>
<th>B</th>
<th>R_3</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>R_4</th>
<th>C</th>
<th>R_5</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row ID</td>
<td></td>
<td></td>
<td>Row ID</td>
<td></td>
<td></td>
<td>Row ID</td>
<td></td>
<td></td>
<td></td>
<td>Row ID</td>
<td></td>
<td>Row ID</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
A join graph consists of
- vertices that represent unique join attribute values
- edges as a binary predicate indicating whether two join in the query
A weighted join graph stores the unique weights that are the cardinalities of certain sub-join queries:

- Let R_i be the query tree root, we define the weights of a tuple $t_j \in R_j$ and a vertex $v_j \in R_j$ w.r.t. R_i as

$$w_i(t_j) = |\bowtie (R(j) \setminus R_j) \bowtie \{t_j\}|, \quad w_i(v_j) = \sum_{t_j \in T(v_j)} w(t_j)$$

where $R(j)$ is the set of tables in the subtree at R_j and $T(v_j)$ is the set of tuples that v_j represent.

- Intuitively, it is the cardinality of the sub-join of the sub-tree at R_j that involves t_j or v_j.
Weighted join graph

- For example, the weights w.r.t. R_1 are

 - $w_1(t_1) = |\{t_1\} \bowtie R_2 \bowtie R_3 \bowtie R_4 \bowtie R_5|$
 - $w_1(t_2) = |\{t_2\} \bowtie R_3 \bowtie R_4 \bowtie R_5|, w_1(t_3) = |\{t_3\} \bowtie R_4 \bowtie R_5|, w_1(t_4) = w_1(t_5) = 1$
 - $w_2(t_2) = |R_1 \bowtie \{t_2\} \bowtie R_3 \bowtie R_4 \bowtie R_5|$
 - $w_3(t_2) = w_4(t_2) = w_5(t_2) = |R_1 \bowtie \{t_2\}|$

![Diagram of the weighted join graph with nodes and labels showing weights and ID values.]
How to draw random sample from a join?

- Fix a join order by choosing any relation R_i as the query tree root
 - Let’s say we choose R_1
 - For simplicity, omit the subscript i in the weight functions for now

- Start from the root $j = 1$,
 - Step 1: randomly draw $t_j \in R_j$ with $p \propto w(t_j) = |\bowtie (\mathbb{R}(j) \setminus R_j) \bowtie \{t_j\}|$
Drawing a single random join sample

How to draw random sample from a join?
- Fix a join order by choosing any relation R_i as the query tree root
 - Let’s say we choose R_1
 - For simplicity, omit the subscript i in the weight functions for now
- Start from the root $j = 1$,
 - Step 1: randomly draw $t_j \in R_j$ with $p \propto w(t_j) = |\bowtie (R(j)\setminus R_j) \bowtie \{t_j\}|$
 - Step 2: for each immediate child R_k, recursively apply step 1 and 2, except that
 - Substitute R_j with $R_k[t_j]$, where $R_k[t_j]$ includes all tuples of R_k that join t_j
- Or, can it be implemented with just one random number?
Problem Formulation

Given a pre-specified SPJ query in the following form,

```
SELECT * 
FROM R1, R2, ..., Rn 
WHERE <join-preds> 
  AND <filter-preds>; 
```

where a `<join-pred>` is in the form of,
- `Ri.A op Rj.B`
- `|Ri.A - Rj.B| < d`

(op is one of `<`, `<=`, `=`, `>`, `>=`; d is a constant)

maintain a readily available join synopsis (random sample) in a database with any insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/ replacement, fixed-size w/o replacement or Bernoulli).

- **Baseline: SJ (Symmetric index/hash Join)**
 - builds conventional tree or hash indexes on all the join columns
 - storage cost is $O(nN)$, where N is the size of the largest table.
 - incrementally maintains samples over a scan of the full join results upon insertion
 - insertion cost is at least linear to the join size (costly!)
 - rescans join upon deletion to replenish missing samples upon deletion (very costly!)
From random sampling to reservoir sampling (cont’d)

- **Issue 1:**
 Two batches of join results involving \(t_i \) and \(t_j \) in *different* tables have to be enumerated with *different* query tree roots \(R_i \) and \(R_j \).

- **Solution:** maintain all the weights w.r.t. all the possible query tree roots
 - For a query with \(n \) tables, there are up to \(2n - 2 \) distinct weight functions and \(2n - 2 \) indexes.
 - Total storage overhead is linear:
 - Also bounded by \(O(nN) \), where \(N \) is the size of the largest table
 - An additional 1 / 2 of indexing overhead for trees in practice
 - Further reduced by consolidating tuples with the same join attributes into vertices
From random sampling to reservoir sampling (cont’d)

Issue 2:
- Still need to draw a random number for each join result
- Though unselected ones are never retrieved

Solution:
- Generate skip numbers
 - The classic Vitter’s algorithm for fixed-size synopsis w/ replacement
 - Maintain m independent reservoirs for fixed-size synopsis w/o replacement
 - Use the Walker’s alias algorithm to draw skip numbers for Bernoulli synopsis
From random sampling to reservoir sampling (cont’d)

- Issue 3:
 - Deletion in fixed-size sampling w/ or w/o replacement can result in insufficient number of samples

- Solution:
 - Redraw the samples using the weighted graph index using any query tree root
 - Need to deduplicate re-drawn samples for the case w/o replacement
Recall that reservoir sampling
- can maintain a fixed-size sample w/o replacement over a stream of items
- deletion can lead to insufficient sample size - we’ll deal with that later

Here, the items are the join results.

The 2nd algorithm for drawing a random sample
- defines a one-to-one mapping from an index number to a join result.
- For an inserted tuple $t_i \in R_i$, let R_i be the query tree root.
 - The batch of the new join results map from a consecutive range of
 $$\sum_{t_i' < t_i} w(t_i') \leq l < \sum_{t_i' \leq t_i} w(t_i')$$
 - We can enumerate the stream by looping over the index numbers.
 - Apply RS on a view of data stream by concatenating these batches.