
Remus: Efficient Live Migration for Distributed Databases
with Snapshot Isolation

Junbin Kang, Le Cai, Feifei Li, Xingxuan Zhou, Wei Cao, Songlu Cai,
Daming Shao

Alibaba Group

Shared-nothing databases on the cloud
• Cost efficiency

ü on-demand resources provision
ü Elasticity at workload of high concurrency

• Dynamic workload
ü Burst requests (e.g., double 11 shopping festival)
ü Skewed access and hotspots also change over time

• Challenge: static sharding is hard to react to dynamic workloads on the cloud

......
shardshard shardshard shardshard

Node Node Node

Skewed burst requests

Overloaded

......
shardshard shardshard shardshard

Node Node Node

Skewed burst requests

shardshard

New Node

Scale out

Shard migration

• Provisioning more VMs under peak loads

• Un-provisioning some VMs under light loads to save costs

• Migrating shards from overloaded nodes to the others for load balance.

Live migration: key to offer elasticity with load balance

Existing approaches: push-migration

shard

WAL

shard
① Copy shard snapshot

Source Node Dest Node② Sync incremental updates

Op1 Op2 OpN... Replay workers

Replay opsLog updates

txns txns

MVCC/OCC MVCC/OCC

④ Hand over ownership

③ Lock, suspend or wait for completion
⑤ Retry or resume

Copy transaction state for resuming

• Existing push-migration incurs transaction aborts or significant downtime

ü Lock-and-abort [Citus, SIGMOD '21]: lock the shard and abort blocked transactions after handover

ü Suspend-and-resume [Albatross, VLDB '11]: suspend src txns, copy transaction state and resume txns on destination

ü Wait-and-remaster [DynaMast, ICDE' 20]: suspend routing and wait for exsiting txns to completion on the source before

handover

Send worker

Existing approaches: pull-migration

Partition lock Partition lock

chunk status

1 migrated

2 not-started

chunk status

1 migrated

2 not-started

src txns dest txns

• The state-of-the-art pull-migration [Squall, SIGMOD '15]:

ü Use chunk status table to track each chunk's migration status

ü Pull chunks on demand by accessing transactions and in the background by workers

ü Leverage partition locks in H-Store to maintain consistency for on-the-fly pulls

• Source transaction would fail if its accessing chunk is migrated -> transaction aborts

• Partition locking would incur significant throughput drops and latency increases

...
chunk

chunk

chunk

chunk

chunk
...

Background pull

chunk
Reactive pull

Lock partition
during pull

Shard Shard

Challenge #1: costs of live migration
• Existing approaches often incur some costs:

ü Failed transactions (e.g., Squall [SIGMOD '15] , Zephyr [SIGMOD '11], Citus [SIGMOD '21])

ü Service downtime (e.g., Citus, Albatross [VLDB '11], DynaMast [ICDE' 20])

ü Performance impact in throughput and latency (e.g., Squall, Citus, Zephyr, Albatross)

• Challenge: theses migration costs may violate the strict SLA on the cloud
ü Alibaba Cloud SLA definition [1]: Monthly Uptime Percentage=100%-Average Error Rate

ü Failed transactions from migration may result in SLA violation on Alibaba Cloud

ü 99.95% SLA means: for 10k TPS, no more than 5 failed txns per second from migration

ü Latency sensitive applications such as online games require even more strict SLO guarantee

• For example, > 100 ms tail latency may severely affect users' game experiences.

[1] https://www.alibabacloud.com/help/en/legal/latest/database-management-service-level-agreement

Challenge #2 live migration under hybrid workloads
• Customers may run hybrid workloads on their cloud database

ü Short OLTP transactions, e.g., stored procedures and client-interactive transactions

ü Long lived transactions (LLT), e.g., analytic queries, batch inserts and a mixed of them for ETL

ü Hybrid workloads of OLTP and LLT are common in HTAP, IoT and HSAP [VLDB '21] scenarios

• Real-time queries over continuously ingested data for BI reports or ML models

• Challenge: migration costs may be amplified under hybrid workloads
ü Failed transactions may lead to huge restart costs for long-lived transactions

ü Analytic queries may lead to a lengthy downtime for suspend-and-resume (Albatross [VLDB

'11]) and wait-and-remaster (DynaMast [ICDE' 20])

ü Interactive transactions make internal restarts for failed transactions impossible

• Designed a live migration under SI (snapshot isolation) with zero service

interruption and marginal performance degradation

• Implemented in PolarDB for PostgreSQL (distributed version)

• Evaluated state-of-art approaches under a broad spectrum of workloads

Contributions

Target system (PolarDB for PG)

Coordiantor Coordiantor Coordiantor......

shard shard shard

Clients

• Multi-coordinator architecture for scaling throughput

• Two-phase commit (2PC) for atomicity

• Distributed snapshot isolation

ü Timestamp ordering based MVCC

ü Global/Decentralized timestamp coordination

RDBMS

SQL

Data Node

Overview

• Remove the lock-and-suspension step and avoid interruption or suspension

• Source transactions: active transactions on the soured node starting before hand-over

• Destination transaction: transactions starting on the destination node after hand-over

• Dual execution: utilizing ordered diversion and MOCC

ü allow both to run concurrently with consistency and snapshot isolation

shard

WAL

shard

Source Node Dest Node

Op1 Op2 Op
N

... Replay workers

Replay opsLog updates

Coordinator Coordinator

src txns dest txns
Transaction Routing

MOCC MOCC

Send worker

① Copy shard snapshot

② Sync incremental updates

Lock, suspend or wait for completion

③ Hand over ownership

shard shard

Source Node Dest Node

Coordinator Coordinator

Ts.start < Tm.commit Td.start >= Tm.commit

Transaction Routing

MOCC MOCC

• Global timestamp ordering: Td starts after Tm commits

• Td.commit_timestamp > Td.start_timestamp >= Tm.commit_timestamp > Ts.start_timestamp

• Td's updates are invisible to Ts under snapshot isolation (SI)

• Unidirectional synchronization: only updates of source transactions propagated to the destination

ü We minimize sync overhead

ü Only source transactions experience sync latency

Ordered diversion

Ts: source transaction

Td: destination transaction

Tm: shard ownership hand-

over transaction

WAL

shard

Source Node Dest Node
② Sync Ts's updates

Op1 Op2 OpN...
Replay workers

③ Replay ops & handle
WW-conflicts using a
shadow transaction

① Write validation
record

Ts dest txns

MOCC MOCC

Send worker

④ Ack validation outcome

⑥ Write commit/abort
record

Shared memory
status

⑤ Notify

Multi-version optimistic concurrency control

• Changing to sync propagation mode: source transaction cannot commit until its changes are

propagated and validated on the destination

• Source and destination transactions follow MOCC:
ü local CC based on MVCC
ü cross-node CC based on OCC

• Distributed source transaction combines 2PC with MOCC's two stage commit

Consistency of shard map cache

shardid nodeid timestamp

1 2 10

2 3 16
2 2 300

shard map table
Coordinator #N

new version

shard map
cache

shard map
cache

Process Process

Load/Sync

• Retain transaction semantics between shard map cache and its MVCC table

ü Each process builds a shard map cache to speed up shard-location when routing transactions (T1)

ü Planner may read stale shard map entries from the cache even if T1's start >= Tm.commit

ü We adopt a read-through strategy to make sure planner can see the appropriate version in cache

Planner Planner

Read through during the execution of Tm

Visible to Ts which has smaller start ts

Visible to Td which has larger start ts

Crash recovery

WAL

shard

Source Node Dest Node
② Sync Ts's updates

Op1 Op2 OpN...
Replay workers

③ Replay ops & handle
WW-conflicts

① Write validation
record

Ts dest txns

MOCC MOCC

Send worker

④ Ack validation outcome

⑥ Write commit/abort
record

Shared memory
status

⑤ Notify

• Crash may happen on source, destination or both nodes during migration

• Check migration status to recover unfinished progress

ü If entering dual execution, check each pair of shadow and source transactions to complete

unfinished transactions

Crash

Evaluation

• Experiments were conducted on Alibaba Cloud using a 6-node database

• Workloads: TPC-C, YCSB and hybrid workloads

ü Hybrid workload A: a hybrid of batching inserts and YCSB

Ø Simulate IoT and real-time analytics scenarios

ü Hybrid workload B: a hybrid of analytic queries and YCSB

Ø Simulate HTAP scenarios

• Elasticity scenarios: cluster-consolidation, scale-out and load balance

• Compared baselines

ü Pull migration: Squall

ü Push migration: Lock-and-abort, wait-and-remaster

Cluster Consolidation under Hybrid workload A
the period of batching inserts the period of entire migration

ü Due to failed transactions from migration, the throughput of batching insert for Lock-and-abort is
only 1/30 of Remus during consolidation

ü There are significant YCSB throughput fluctuations for Wait-and-remaster and Squall

YCSB throughput

Under Hybrid workload B & YCSB only

ü significant YCSB throughput fluctuations for Squall

ü The YCSB throughput of wait-and-remaster and Squall drops to zero during the execution of analytical
query

YCSB throughput

the period of analytical query

YCSB throughput

Cluster consolidation under Hybrid workload B

Load balance under YCSB only

Cluster Scale-out under TPC-C

ü Remus introduces much smaller throughput variation

ü The lock downtime for ownership handover in lock-and-abort leads to significant throughput
fluctuations

TPC-C throughput

Latency increase compared to lock-and-abort

ü The avg. latency increase in Remus is about an order of magnitude smaller than that in Lock-and-abort

ü The latency increase in Lock-and-abort includes:

Ø the time to lock the migrating shards and replay all remaining final updates

Ø the time to update the shard map table across coordinators using 2PC

Avg. latency increase in ms

Conclusion

• Compared to state-of-the-art approaches, Remus achieves following advantages

under a wide variety of workloads:

ü zero transaction abort

ü zero downtime

ü marginal performance impact in terms of both throughput and latency

Design challenge for dual execution

• Challenge for dual execution： How to maintain consistency at a low overhead

ü Squall adopts partition locking -> large overhead & failed txns

ü Zephyr uses frozen index + page locking to synchronize -> large overhead & failed txns

ü ProRea [EDBT '13] synchronizes pages between sites -> large overhead

ü MgCrab [VLDB '19] uses determinism to synchronize -> not general

• A good design should avoid the use of locking and bidirectional syncing

Source Node Dest Node

...

locks locks

src txns dest txns

chunk

chunk

chunk

chunk

chunk
...

Pulls for Squall/Zephyr

chunk
Bidirectional sync for ProRea

Overhead

Ordered diversion

shardid nodeid timestamp

1 2 10

2 3 16
2 2 300

shard map table

shardid nodeid timestamp

1 2 10

2 3 16
2 2 300

shard map table

Update shardmap set nodeid = 2 where shardid = 2

2PC

Coordinator #1 Coordinator #N

• Adopt multi-versioning shard map table + timestamp ordering protocols to achieve this

ü Planner uses running transaction's start timestamp to read shard map entries for routing

ü We use a distributed transaction Tm to update shard map table across coordinators

ü Existing timestamp ordering protocols (e.g., Google Percolator [OSDI '10]) can be leveraged to

guarantee routing consistency among multiple coordinators

......

Tm

Migrate shard 2 from node 3 to node 2

new version

