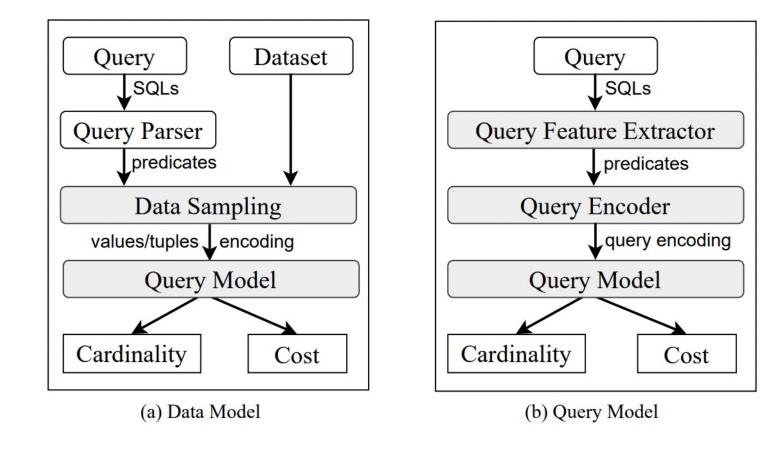
PreQR: Pre-training Representation for SQL Understanding

<u>Xiu Tang</u>, Sai Wu*, Mingli Song, Shanshan Ying, Feifei Li, Gang Chen

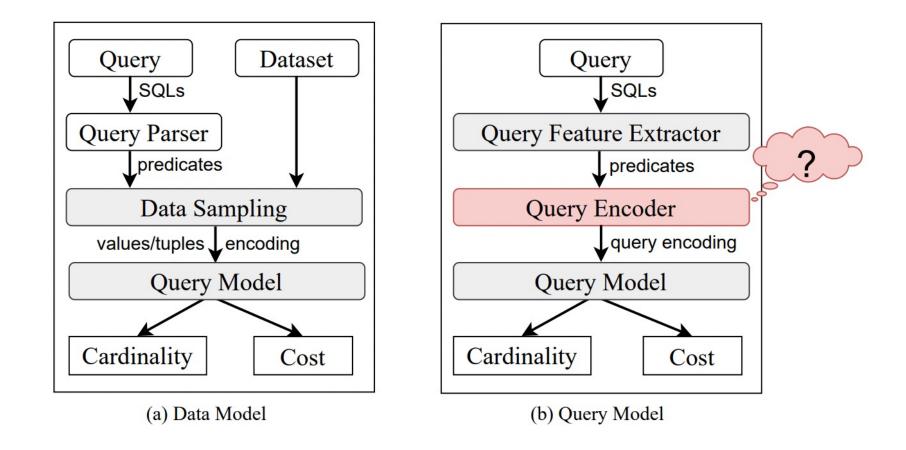
Zhejiang University & Alibaba Group

AZFT (Alibaba-Zhejiang University)

Learning-based Database Optimization



Learning-based Database Optimization



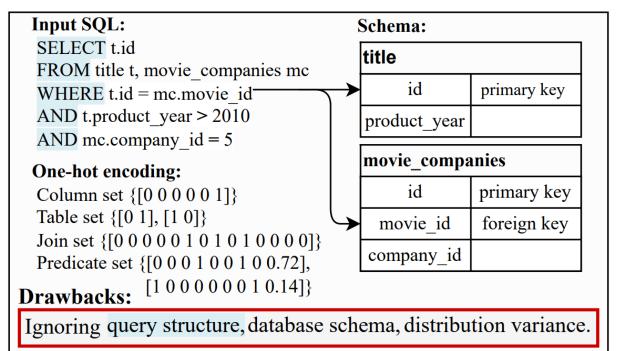
SQL structure information:

Encoding simply concatenates the encoding of all clauses in the query.

• Database schema information:

All tables and columns use an independent one-hot encoding.

• Database column value distribution information:



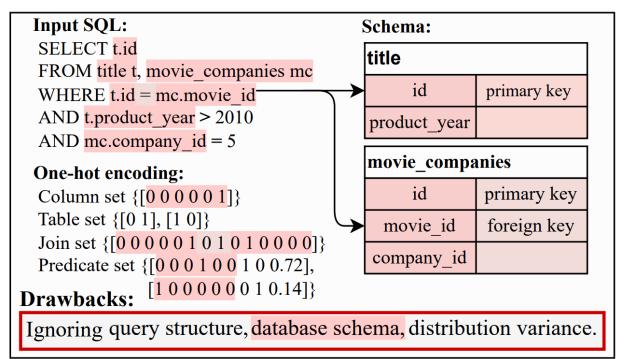
• SQL structure information:

Encoding simply concatenates the encoding of all clauses in the query.

Database schema information:

All tables and columns use an independent one-hot encoding.

• Database column value distribution information:



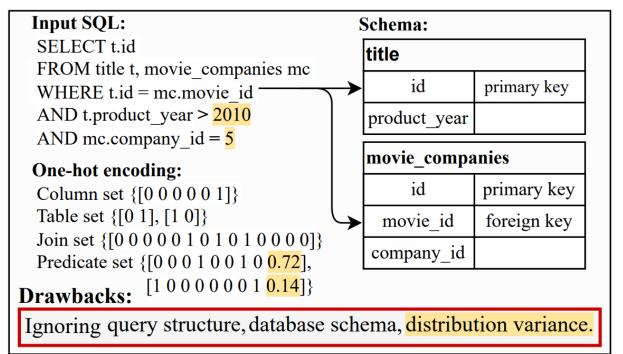
• SQL structure information:

Encoding simply concatenates the encoding of all clauses in the query.

• Database schema information:

All tables and columns use an independent one-hot encoding.

• Database column value distribution information:



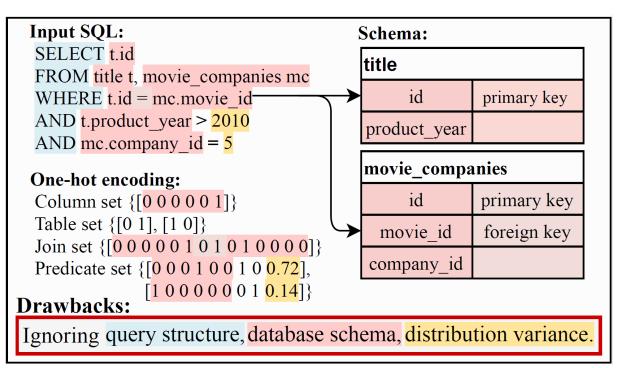
• SQL structure information:

Encoding simply concatenates the encoding of all clauses in the query.

Database schema information:

All tables and columns use an independent one-hot encoding.

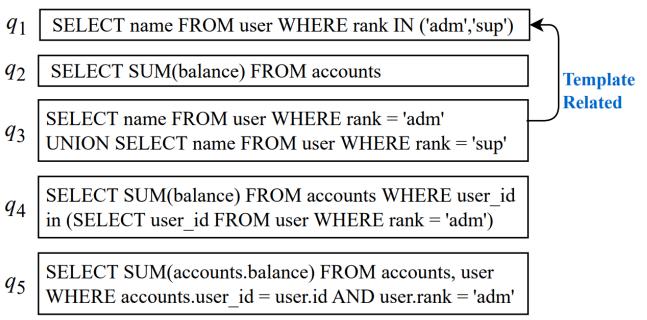
• Database column value distribution information:



- The language representation has been well studied by work on the NLP.
- However, SQL incurs **new challenges:**
 - Semantically equivalent:
 - query q₃ and q₁, which can be easily identified by their query structures;
 - query q_5 and q_4 , which can be discovered via involved schema information.

- *q*₁ SELECT name FROM user WHERE rank IN ('adm','sup')
- q_2 | SELECT SUM(balance) FROM accounts
- *q*₃ SELECT name FROM user WHERE rank = 'adm' UNION SELECT name FROM user WHERE rank = 'sup'
- q_4SELECT SUM(balance) FROM accounts WHERE user_idin (SELECT user_id FROM user WHERE rank = 'adm')
- *q*₅ SELECT SUM(accounts.balance) FROM accounts, user WHERE accounts.user_id = user.id AND user.rank = 'adm'
 - → Logically Same ----> Query Dependent

- The language representation has been well studied by work on the NLP.
- However, SQL incurs **new challenges:**
 - Semantically equivalent:
 - query q₃ and q₁, which can be easily identified by their query structures;
 - query q_5 and q_4 , which can be discovered via involved schema information.

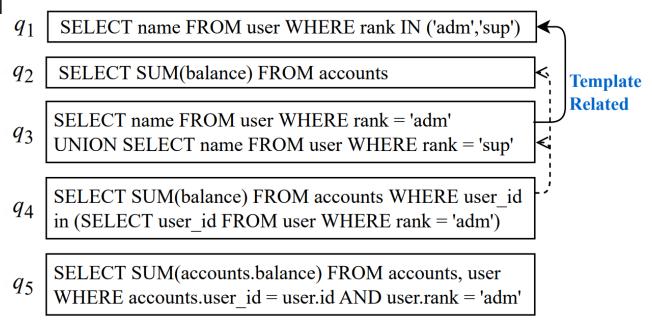


---->

Query Dependent

Logically Same

- The language representation has been well studied by work on the NLP.
- However, SQL incurs **new challenges:**
 - Semantically equivalent:
 - query q₃ and q₁, which can be easily identified by their query structures;
 - query q_5 and q_4 , which can be discovered via involved schema information.

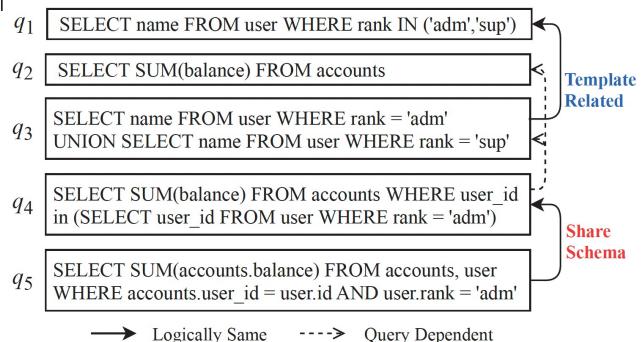


---->

Ouery Dependent

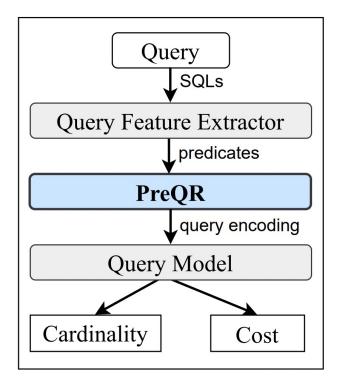
Logically Same

- The language representation has been well studied by work on the NLP.
- However, SQL incurs **new challenges:**
 - Semantically equivalent:
 - query q₃ and q₁, which can be easily identified by their query structures;
 - query q_5 and q_4 , which can be discovered via involved schema information.



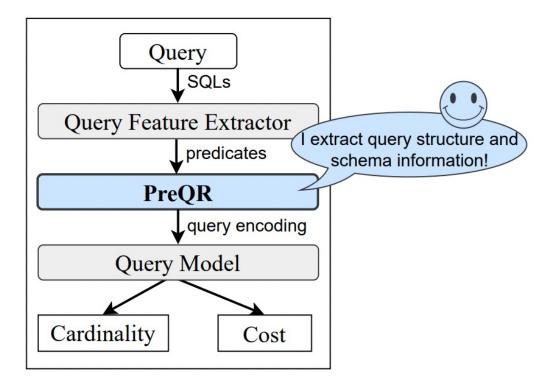
Introducing PreQR

- **PreQR:** <u>Pre</u>training <u>Query</u> <u>Representation</u>.
- By pretraining query representation, **PreQR:**
 - integrates the database schema, query structure and content knowledge.
 - only needs to be trained once for a database and can be used in various learning tasks.
 - performances on various database tasks obtain a significant improvement.

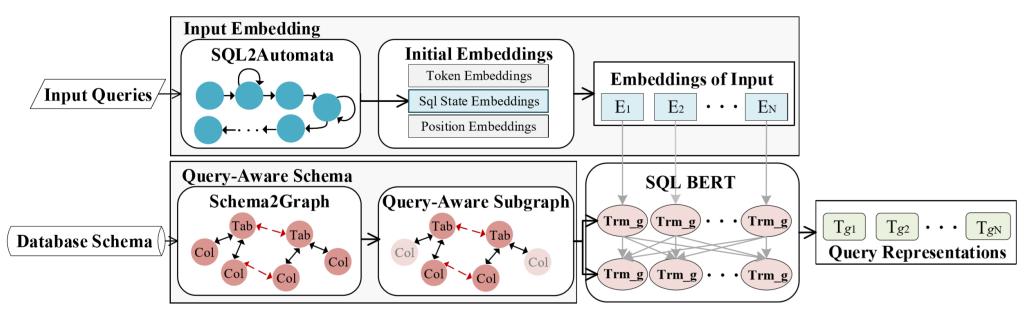


Introducing PreQR

- **PreQR:** <u>Pre</u>training <u>Query</u> <u>Representation</u>.
- By pretraining query representation, **PreQR:**
 - integrates the database schema, query structure and content knowledge.
 - only needs to be trained once for a database and can be used in various learning tasks.
 - performances on various database tasks obtain a significant improvement.

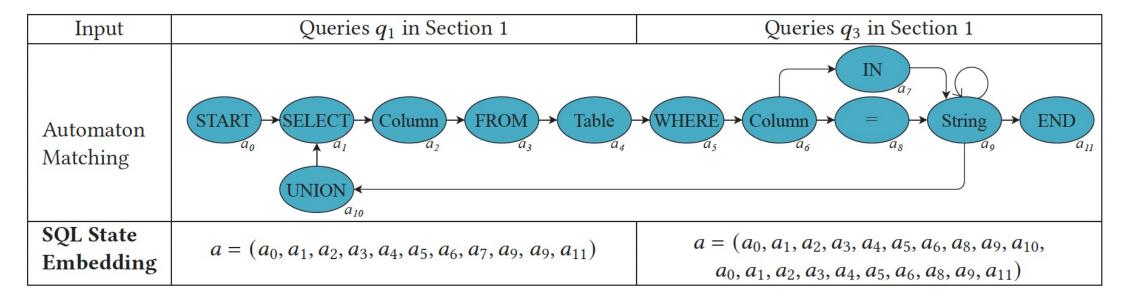


PreQR



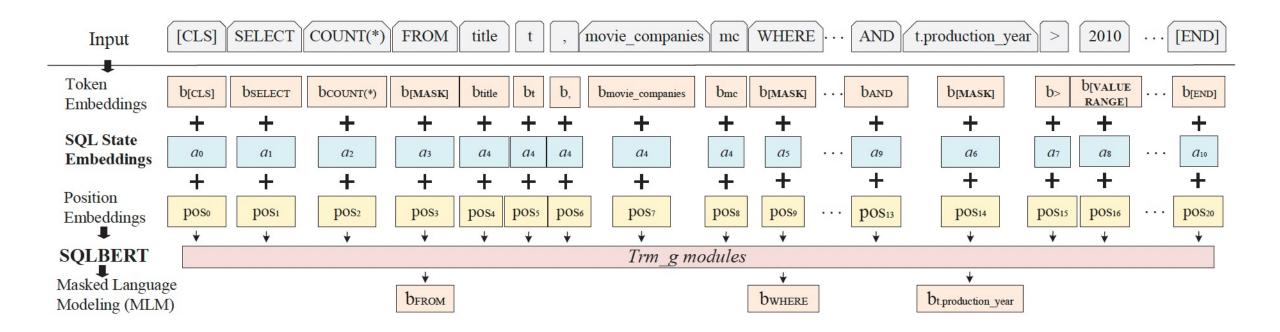
- The **input embedding** represents the query structure via matching automaton states.
- The **query-aware schema** use a graph-structured model to encode SQL-related schema information.
- The **SQL BERT encoder** leverages the attention mechanism to identify the query-aware structural and schema information in an ad-hoc way.

SQL2Automaton



- PreQR transforms the query structure into a finite-state automaton (FA), which is a machine with a finite number of states.
- Automata can recognize syntactically well-formed strings to represent the semantic structure of SQL.

PreQR Input Representation



Schema2Graph

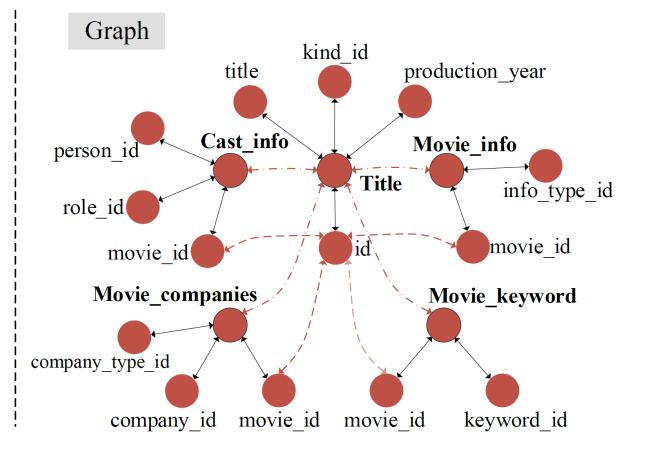
Schema

Tables:T = (Title, Movie_keyword, Cast_info, Movie_info,
Movie_companies, ...)

Columns: Ctitle = {id, title, kind_id, production_year, ... } Cmovie_companies = {movie_id, company_id,

company_type_id, ... }

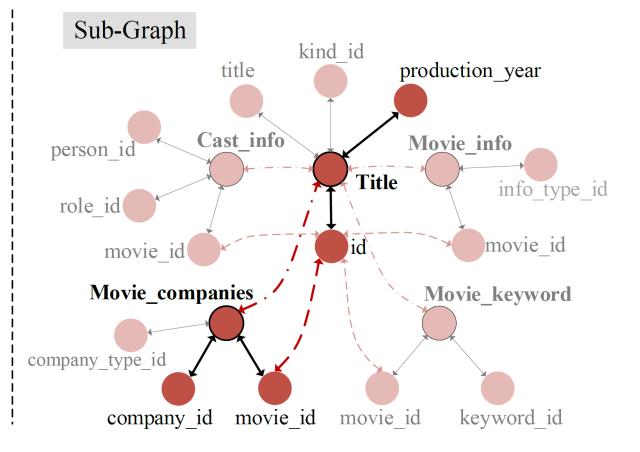
Foreign: F = {(title.id, movie_companies.movie_id), (title.id, movie_info.movie_id), ... }



Query-Aware Schema

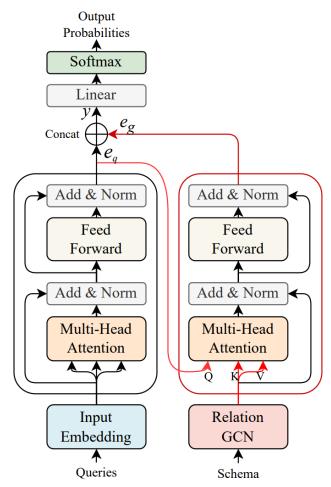
Input

Query: q = "SELECT COUNT(*) FROM title t, movie_companies mc WHERE t.id = mc.movie_id AND t.production_year > 2010 AND mc.company_id = 5 "



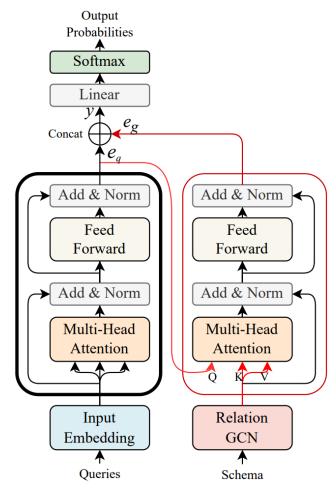
Trm_g Module in PreQR

- *Trm_g* architecture is a variant of the Transformer from BERT.
- The *Trm_g* model includes the original Transformer *Trm* (black rectangle) and our query-aware sub-graph Transformer *Trm'* (red rectangle).
- PreQR augments each word with the graph structure of the schema items that it is linked to.



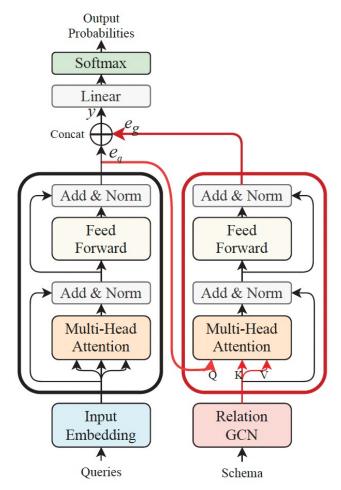
Trm_g Module in PreQR

- *Trm_g* architecture is a variant of the Transformer from BERT.
- The *Trm_g* model includes the original Transformer *Trm* (black rectangle) and our query-aware sub-graph Transformer *Trm'* (red rectangle).
- PreQR augments each word with the graph structure of the schema items that it is linked to.



Trm_g Module in PreQR

- *Trm_g* architecture is a variant of the Transformer from BERT.
- The *Trm_g* model includes the original Transformer *Trm* (black rectangle) and our query-aware sub-graph Transformer *Trm'* (red rectangle).
- PreQR augments each word with the graph structure of the schema items that it is linked to.



Extensibility

- Case 1: The distribution of data changes significantly.
- Case 2: If the database schema is updated, we need to update the schema graph model G_s.
- Case 3: When query patterns change, we may need to update the FA to handle new queries.
- Case 4: Training a new embedding model for a database from scratch.

Case	Description	Time
Case 1	Incremental learning for the last layer of SQLBERT	15min
Case 2	Incremental Learning for the Schema2Graph part	3.5h
Case 3	Incremental learning for the Input Embedding module	6.7h
Case 4	Train from scratch	18.3h

Experiment Highlight

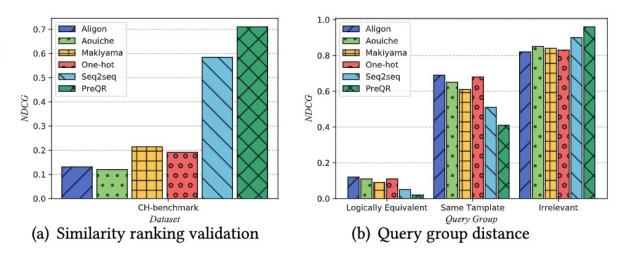
PreQR handles various downstream tasks:

• Query Clustering:

Comparing with five approaches to measure pairwise similarity between queries.

• SQL-to-Text Generation:

Comparing the encoding of PreQR model against the Seq2Seq, Tree2Seq and Graph2Seq.



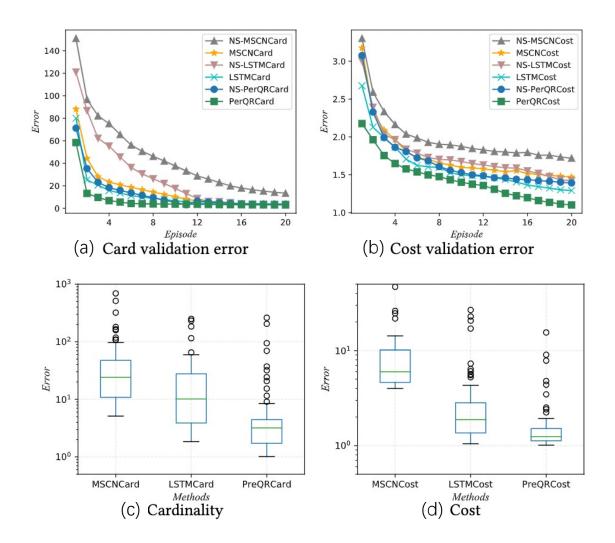
SQL	SELECT opponent WHERE points < 18 AND November > 11;
Seq2Seq	What is the opponent when the points are less than 18 with the November is more than 11 ?
PreQRWhich opponent has the points less than 18, and the November more than 11 ?	

Experiment Highlight

• Query Cardinality and Cost Estimation:

Comparing with a conventional method (PostgreSQL), the query-based learning models (MSCN and LSTM), and a databased learning model (NeuroCard).

• The experimental results showed that by replacing the encoders of existing models with PreQR encoding, performances on various database tasks obtain a significant improvement.



PreQR

• PreQR: towards pre-training SQL embedding.

Xiu Tang

• Email: tangxiu@zju.edu.cn