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ABSTRACT
The autonomous database of the next generation aims to apply the
reinforcement learning (RL) on tasks like query optimization and
performance tuning with little or no human DBAs’ intervention.
Despite the promise, to obtain a decent policy model in the domain
of database optimization is still challenging — primarily due to the
inherent computational overhead involved in the data hungry RL
frameworks — in particular on large databases. In the line of miti-
gating this adverse effect, we propose Mirror in this work. The core
to Mirror is a sampling process built in an RL framework together
with a transferring process of the policy model from the sampled
database to its original counterpart. While being conceptually sim-
ple, we identify that the policy transfer between databases involves
heavy noise and prediction drifting that cannot be neglectable.
Thereby we build a theoretical-guided sampling algorithm in Mir-
ror assisted by a continuous fine-tuning module. The experiments
on the PostgreSQL and an industry database PolarDB validate that
Mirror has effectively reduced the computational cost while main-
taining a satisfactory performance.

CCS CONCEPTS
• Information systems → Database management system en-
gines; Data access methods; • Computing methodologies →
Search methodologies; Reinforcement learning.
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database performance tuning, reinforcement learning, autonomous
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1 INTRODUCTION
Most, if not all, Web apps are developed upon databases. Alongside
the continual rapid booming of the Web, one of its core component
in the infrastructure — the database — is urged to evolve concur-
rently, due to the blast of cumulative information and data. One
promising direction for the database of the next generation is to
fulfill a complete autonomy; namely through the exploitation of
the artificial intelligence technologies, the autonomous databases
can automatically resolve a number of crucial fundamental tasks
such as query optimization or performance tuning. While these
tasks were conventionally accomplished by human-DBAs in the
past, it has become increasingly difficult for human intervention
due to scalability issues.

One of the most human-intensive tasks in modern database sys-
tems — such as the PostgreSQL and an industry database PolarDB
— is arguably the database maintenance and tuning task. Notably,
more than 90% of DBA’s efforts contribute to solving the “slow
SQL query” puzzle and sometimes, even experienced DBA crew
can fail to address the performance issues for a specific application.
Thanks to the rapid advances in machine learning, some recent
work [11, 13, 15, 16, 19, 21, 22, 25, 27, 29, 30, 38] pioneers a new
research venue, i.e., autonomous database. The concept of an au-
tonomous database is an inherently self-maintained system with
little human intervention. A variety of tasks including query opti-
mizations, database configurations and tuning are entirely handled
by a continuous learning mechanism.

The majority of the existing work[13, 15, 19, 21, 22, 25, 27, 30, 38]
employs a reinforcement-learning based paradigm. The mechanism
of such frameworks is to formulate the database tasks as a proxy
of markov decision process (MDP). Through extensive exploration
and exploitation by interacting with the DMBS, its production is an
self-evolving online agent, e.g. predicts the (sub)optimal database
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Figure 1: Index Recommendation Process on TPC-H data
with different sizes
configurations or query plans. The performances after the adjust-
ments, normally measured by query latency, query throughput,
and storage cost, are fed back as rewards to the MDP to update
its built-in parameters by gradient descent. A critical problem in
any RL-powered system in recent years is ubiquitously the sample
complexity issue; in our setup, to obtain a good agent it may re-
quire overly many interactions with the DMBS till convergence. By
contrast to the usual game-AI setup, to extensively interact with
a DBMS, in particular a big database, is problematic. In particular,
overly performing querying or interaction may cause significant
computational and time burden in this scenario. More specifically,
in Figure 1, we show the training overhead of an index recommen-
dation model proposed in this paper on TPC-H dataset of different
sizes (details are presented in the experiment section). The total
processing time was employed as our performance metric to train
the model. As we can see from the plot, for the small database, we
can reduce the running time by half after 2 or 3 hours of training
via creating the corresponding indexes. For the large database, to
achieve a similar result, the training process lasts for a few days or
even months. This indicates that existing reinforcement learning-
based index recommendation approaches are too expensive to be
applied large-scale databases.

To tackle this problem, in this paper, we propose a transfer-
able sampling-based learning framework with an aim to reduce
the potential training overhead for big databases, dubbed as Mir-
ror. In particular, Mirror consists of a transferring process where
the trained policy network is adapted from a sampled database to
its original counterpart. While it may seem straightforward, we
identify that transferring the policy network between databases
of different sizes incur unignorable noises and prediction drifting.
In Mirror, we further provide a practical sampling algorithm that
is guided by rigorous theoretical analysis. To this end, we try to
answer the following three questions in Mirror.
• What is the difference between the neural model trained in the
sampled database and original database?

• How can we guarantee that the model trained in the sampled
database is well-adopted to the original database?

• If model transfer incurs a high precision loss, how can we address
the problem?

In this paper, we use a typical database tuning task, index recom-
mendation, as an example to illustrate the workflow of Mirror. In
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Figure 2: Overview of theMirror

particular, we build a reinforcement learning framework to support
the index recommendation process. Given a target workload con-
sisting of frequent queries, the learning model converges to a final
sequence of index actions, minimizing the total query latency.

We first train the model on an unbiased sampled database. Then,
the Mirror framework reuses state-of-the-art results on the robust-
ness of deep neural models, and show how to estimate a proper
bound that guarantees that the predicted results work for both
databases without affecting the performance. If the bound is vio-
lated, Mirror applies a continuous learning approach to adjust the
result directly on the original database. To reduce the overhead, we
only draw necessary training samples from the original database to
refine the model. Mirror has been integrated into PolarDB as a self-
tuning module for our DBA, which currently supports index tuning,
cardinality estimation and query plan search. Further, while we
showcase the incorporation ofMirror into PostgreSQL and PolarDB,
Mirror can easily be extended to support other database systems.

2 FRAMEWORK OVERVIEW
The general workflow of our framework is shown in Figure 2.Mirror
works in two phases: the initial training phase and the continuous
learning phase. In the initial training phase, Mirror first generates
an unbiased sampled database, which is two or three orders of
magnitude smaller than the original database. Then, a DL (Deep
Learning) model is trained for target workloadW via exploring the
performance of different database configurations on the sampled
database. The loss function of the model is to minimize a given
performance metric, such as the total processing cost ofW .

In our current implementation, we defineW as a set of query
templates, representing the most popular queries. This strategy is
consistent with our application scenario, where PolarDB receives
queries submitted fromweb forms and mobile Apps. Note that, even
with the same template, various queries show different processing
costs due to varied predicates.

In the second phase, Mirror transfers the trained model to the
original database and adjusts it based on our theoretical analysis.
In particular, a continuous learning approach is employed to refine
the model for outliers that cannot be bounded by our theorems.
The number of outliers is a trade-off between the accuracy and the
performance as the training process on the original database incurs
extremely high overheads.
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After the second phase, the model is well-tuned for the original
database and the target workload. Compared to building a model
from scratch,Mirror can provide a comparable inference result with
an affordable cost for large databases. Moreover, when the root
cause of the slow queries is detected[17], Mirror can recommend
the DBA possible tuning approaches.

In what follows, we introduce the two phases in more details
using the index recommendation task as an example. The index
recommendation task is defined as:

Definition 1. For a database D, let C represent its column set.
Given a budget λ and target workloadW , the recommendation al-
gorithm picks up λ columns for indexing and selects a proper index
type(e.g., B-tree, Hash and Bitmap) for each index to minimize the
total processing cost forW .

If there are k types of indexes available for the database, the
problem can be simplified as a (k + 1)-class classification problem.
Namely, for each column, we generate a prediction by picking from
one of the (k + 1) classes. The process repeats λ times, until the top
beneficial columns are classified.

2.1 Initial Training Phase
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Figure 3: Neural Network
In the initial training phase, we build a sampled database using

random sampling strategies in [9] and train a DL model for target
workloadW . To generate training samples, we create a random
query setW q based on our workload templateW . The size ofW q ,
K , is a tunable parameter. Larger K makes the model converge
faster but incurs high storage overhead for GPUs. Therefore, our
strategy is to pick the largest possibleK based on the available GPU
memory.

Since Mirror modifies its theoretic estimations for each particu-
lar model, we briefly introduce our index recommendation model
for better clarification. For the index recommendation algorithm
task, the architecture of our DL model, shown in Figure 3, consists
of several sub-neural networks: workload feature network, index
feature network and fusion network.

In the workload feature network, we generate a vector represen-
tation for database states (query setW q and index configuration).

Columns from different tables are serialized and assigned a uniform
ID as C1, C2, · · · , Cm (see column mapping table in Figure 3). We
transform the workload into twom ×m matrices, Ijoin and Isel ,
which are used to form up the final query embedding IW .

For the join operators, we consider the equal-join between pri-
mary key and foreign key in this paper. Thus, the join information
can be represented by anm ×m boolean matrix Ijoin . For column
Ci and Cj , their corresponding values (Ijoin [i, j] and Ijoin [j, i]) in
the matrix denote the probability that Ci ▷◁ Cj appears in a query
set from the workload. For example, in Figure 3, where two queries,
Q1 and Q2, are in the workload, the values of two join operators
(R.R1 = O .O1 and S .S1 = R.R2) are both set to 0.5 since each of
them only appears in one query. For other possible join operators,
the values are all initialized as 0.

For each query Qi in a given workload, we use Sel(Qi ,Cj ) to
denote the selectivity of Qi ’s predicate on column Cj , which can
be computed by | selected records of Qi on Cj |

| total records of Cj |
. If Qi does not contain

any predicate on column Cj , we have Sel(Qi ,Cj ) = 1. As shown in
Figure 3, there are two predicates R2 > v1 and O2 = v2 in query
Q1. Therefore, we have Sel(Q1,C2) = sel1 and Sel(Q1,C4) = sel2.
Similarly, we have Sel(Q2,C6) = sel3 and Sel(Q2,C1) = sel4.

For some columns, the value of Sel(Qi ,Cj ) could be less than
0.01%, incurring floating point precision problem. Hence, we use
loд( 1

Sel (Qi ,Cj )
) instead of Sel(Qi ,Cj ) in matrixMsel to ensure the

effectiveness of the framework. Msel is a K ×m matrix, where K
is the number of queries inW q andm represents the number of
columns in the database schema. To remove the effect of the order
of the queries and K , Msel is further transformed into anm ×m
dimension matrix Isel = 1

n ∗ (MT
sel ×Msel ).

We use a 2-layer CNN (Convolutional Neural Network) as our
workload feature extraction network. A pooling layer is used to
compress the output from convolutional layers, which aggregates
the features and reduces the computational complexity. The pooling
layer also improves the robustness of the extracted features. We
use 3 × 3 convolution kernels and a padding of 1 × 1 to ensure that
the output is the same size as the input, and apply the max-pooling
with a stride of 2 to reduce the size by half. Then, the output is
flattened as the workload feature vector.

In the index feature network, we use a vector of size 2m to
indicate whether a column has been indexed or not, namely

IIndex = [existsIndex(C1),Type(C1), ... , existsIndex(Cm ),Type(Cm )]

existsIndex(Cj ) is set as 1, if column Cj has been built an index.
And Type(C1) returns the type of the corresponding index (cur-
rently, only B-tree, Hash Table and Bitmap are supported). Our
index feature network is a 3-layer fully-connected network, where
Rectified Linear Unit (ReLU) is used as the activation function.

After the extraction of the workload feature vector and the index
feature vector, the two vectors are concatenated and fed into the fu-
sion network. Our fusion network consists of three fully-connected
layers and outputs the predicted Q-value vector, which works as an
RL (Reinforcement Learning) agent to select the next index building
action to maximize the expected reward.
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2.2 Continuous Learning Phase
The model trained on the sampled database is transferred to the
original database and we apply theoretic bounds to describe the
expected prediction of the transferred model (details are shown in
Section 3). To further refine the model, we also introduce a continu-
ous learning process to update the model if necessary. The approach
is motivated by the following two observations. (1) As mentioned
in Section 2, there exist queries for the original database whose
selectivity is significantly different from the sampled database. (2)
The workload and the data distribution in real systems often change
over time. The model cannot predict proper indexes for new queries
and new data, and therefore, a model updating strategy is required.
In particular, the continuous learning process in Mirror includes
two steps.

Step 1: Locate the outliers for the transferred model. For
a query setW q , the values of the input matrix Iw to the sampled
database and the original database may differ a lot. We consider Iw
in the original database as a noisy input for the model trained in
the sampled database. Then, we apply our theoretic results on the
robustness of the neural model to compute a bound for the noise.
Within the bounds, the model returns a consistent result for both
databases. Otherwise, the query setW q is considered as an outlier
set. When we obtain enough outlier sets, we start the next step of
the continuous learning process.

Step 2: Tune the model with a new branch. To fine-tune
the model with outliers, we apply a fusion network. We build a
new branch of classification layers (in red rectangle) in the fusion
network. The pre-trained parameters of the model are frozen to
ensure that learned knowledge on the sampled database is not
forgotten. A new layer hcli receives the input from both hcli−1 and
hi−1. We use Vi and V cl

i to denote the weight matrix of hi and hcli ,
respectively. The lateral connections from layer i − 1 of the frozen
branch to the layer i of the new branch are denoted asU cl

i . Thus,
we have

hcli = fcl (V
cl
i × hcli−1 +U

cl
i × hi−1),

where fcl (x) = max(0,x). Different from the progressive neural
network in [23], we keep only one new branch regardless of the
number of outliers to avoid the problem on continuous memory
expansion. The architecture of the neural network model is visually
illustrated in the appendix.

To speed up the convergence of the model for outlier selection,
we apply a prioritized experience replay strategy firstly proposed
in [26], which can detect unexpected experience tuples and replay
them more frequently during the updating of the neural network.
The importance of the experience tuples is measured by the magni-
tude of a transition’s D-error δ , which indicates how unexpected
the transition is. That is, how far the value is from its next-step
bootstrap estimation [1]. Obviously, the D-errors are larger on
the outliers compared to the normal input, which follows similar
distributions to the sampled database.

3 ROBUSTNESS OF MODEL TRANSFER
In this section, we justify our approach of transferring the model
trained on the sampled database D ′ to the original database D. In
Mirror, the DL model can be considered as an agent, which inter-
acts with databases in two ways. First, the model accepts feature

embeddings from databases as its input for training and prediction.
Specifically, in the index recommendation case, the input includes
two matrices, Ijoin and Isel . Second, it asks DBMS to apply the
prediction results and test against the target workload to obtain
performance metrics as rewards. The rewards are further used as
feedbacks to tune the model. In order to produce similar results for
both databases, we take the following actions:
• The input fromD is considered as a noisy input fromD ′ regarding
to the model trained for D ′. We show that the effect of noises
on the prediction results can be bounded in the rest part of this
section.

• The cost of processing a query varies a lot on different sizes of
databases and normally does not follow a linear scale-up. We
design a neural/cost model approach to adjust the rewards.
Note that the reliability and robustness of DL models is still

an open question. Instead of providing rigorous proof, we reuse
previous theoretic results to give a best-effort guarantee, which is
good enough for most systems.

3.1 Robustness Regarding to Noises
Models in Mirror can be considered as multi-class classifiers. For
instance, in the index recommendation task, we have : f : Im×m

join ×

Im×m
sel → Vm , where V is a probability vector. The model pre-
dicts building an index for the i-th column with a probability V [i].
This is a typical multi-class classifier with stacked CNN layers. For
simplicity, we further transform it into a two-class classifier as:
f : Im×m

join × Im×m
sel × i → {v, 1 −v}. v is the probability of building

index on column i .
In Mirror, we first discard the inputs that are not affected by the

sampling strategy. In the index recommendation task, Ijoin remains
the same forD andD ′ because it is only determined by the database
schema. For the remaining input, we consider them as noises to
our trained model. In our example, Isel , computed on D, can be
considered as the estimation with noises for D ′. To be simple, we
use X = x̄ + δ to denote the input to D with a noise δ .

Suppose the correct class for an input x̄ on D ′ is i∗ (i∗ = 0 or 1),
we define the margin function for a neural model f (x) as:

д(x) = fi∗ (x) − fi (x)

д(x) estimates the boundary between the correct class and other
classes. If д(x) ≥ 0, we generate a correct prediction even with
noises δ . Otherwise, the model mis-classifies X . Our intuition is to
guarantee that most decisions onD andD ′ are consistent. Therefore,
we set a threshold ϵ ∈ (0, 1) and try to estimate the probability:

Pr (д(x) ≥ 0) ≥ 1 − ϵ

.
Previous work [34, 37] show that margin function д(x) can be

bounded by two linear functions:

дL(x) ≤ д(x) ≤ дU (x)

where дL(x) and дU (x) are defined as:

дL(x) = ALx + bL

дU (x) = AU x + bU
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AL and AU are two constant row vectors and bL and bU are two
constants. All the parameters can be computed using neural net-
work distillation technique [10]. In this way, if дL(x) ≥ 0, we can
guarantee that the model is robust against noises.

Reusing the results from PROVEN [33], we have the following
theorem for lower and upper bounds (for proof, please refer to the
PROVEN paper).

Theorem 1. Let f (x) be a K-class neural classifier and x0 is its
input. We define the noise δ as | |x − x0 | |p ≤ δ for p ≥ 1. Let д(x) be
the margin function. Suppose the input vector X follows some given
distributionD with mean x0. For a constant a ≥ 0, there exists a lower
boundL and upper boundU for the probabilityL ≤ Pr (д(x) ≥ a) ≤
U, where

L = 1 − FдL (x )(a)

and
U = 1 − FдU (x )(a)

FZ (z) is the cumulative distribution function (CDF) of the random
variable Z .

To compute the lower and upper bound, we need to estimate the
CDF FZ (z). In other words, given the distribution of input vector
X , we should compute дL(x) and дU (x) correspondingly. In Mirror,
the noises are introduced when performing unbiased sampling for
both D and D ′. Different from the case of adversarial attacks, the
noises in our scenario can be considered as following a multivariate
normal distribution with mean x0 and some covariance Σ.

We define µL and µU as follows:

µL = ALx0 + b
L , µU = AU x0 + b

U

And the variances σL and σU as:

σ 2
L = ALΣ(AL)T ,σ 2

U = AU Σ(AU )T

where T denotes the transpose operator.
Note that if X follows a normal distribution with a mean µ and

variance Σ, the linear combination Z = wX + v also follows the
normal distribution with a mean µz = wµ + v and variance σz =
wΣwT . The CDF of Z can be estimated as:

1
2
(1 + er f (

z − µz

σz
√

2
))

where er f represents the Gauss error function defined as:

er f (x) =
2
√
π

∫ x

0
e−t

2
dt

Merging the definitions for CDF of Z , µL , µU , σL and σU . We have

L ≈
1
2
−

1
2
er f (

a − µL

σL
√

2
))

U ≈
1
2
−

1
2
er f (

a − µU

σU
√

2
))

In our current implementation, we evaluate the distance between
inputs in L∞ space. So the noise is computed as δ = | |x − x0 | |∞ =
arдmaxi (|x[i] − x0[i]|). After our model is trained on the sampled
database, we can compute the lower bound L and infer the maxi-
mally allowed noise with given confidence (e.g., Pr=95%). In fact, a
precise estimation for the bound is not necessary and may be costly.
Therefore, we adopt the sampling-based approach from [33], where
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Figure 4: Processing Time on Sampled Databases
for Query “select * from customer, orders where
customer.c_custkey =orders.o_custkey and c_ad-
dress=’yjUwrTVRDrfVrJ6m0m’ and o_orderpriority
<’3-MEDIUM’ and o_clerk=’Clerk#000260479’ and c_-
mktsegment =’HOUSEHOLD’;”

a set of samples is picked and we apply a bisection search for the
noise bound. The bound is gradually refined with new samples.

The detailed computation of noise on the neural model can be
found in Appendix A.

3.2 Normalization of Rewards
For a specific query qi on a database D, let ρi be the sampling ratio
of the database. The query cost on the sampled database is repre-
sented as R(qi , ρi ). Ideally, R(qi , ρi ) is a linear function regarding
to ρi . However, due to incorrect estimation for the statistics and
multiple join operations involved, R(qi , ρi ) may be difficult to sim-
ulate in real systems. Figure 4 shows an example of the processing
time for a query on the TPC-H dataset with different sizes. (Other
performance metrics show a similar result)

The performance metric is used to compute the reward when
training the neural model. To guarantee that the neural model
returns the same prediction result for both the original database and
any sampled database, we must normalize the rewards on sampled
databases so that the prediction results are consistent for all sampled
databases. If function R can be learned, the normalization process
is defined as:

rnorm (qi , si ) =
R(qi , 1)
R(qi , ρi )

∗ RT (qi , I )

where RT (qi , I ) returns the real processing cost of qi on sampled
database, andR(qi , 1) denotes the predicted cost ofqi on the original
database.

In fact, R is a general cost estimation function for arbitrary
queries on sampled databases with varied sizes. It is non-trivial to
directly build a model for function R due to the large search space.
In this paper, instead of predicting R(qi , ρi ), we directly estimate
R(qi ,1)
R(qi ,ρi )

. The learning complexity is manageable for:

• R(qi , 1) and R(qi , ρi ) are processing costs for the same query
with the same database configurations.
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• The statistics estimated from histograms have the same impact
on the cost models of the original database and the sampled
database1.

• Given the above two assumptions, both original database and
sampled database will process qi using the same query plan as
indicated in Theorem 2.

Theorem 2. For a database D and its unbiased sampled database
D ′, if both databases adopt the same indexing strategy, they will
process a query using the same query plan with a high probability.

Proof. The proof is in Appendix D. □

To learn the normalized ratio R(qi ,1)
R(qi ,ρi )

, we propose a CAB (Cost
model Adjustment using neural Bias) approach. The intuition is
that the cost model can provide a baseline estimation for the costs
of relational operators. Instead of training an end-to-end neural
cost model, we ask the neural network to learn the effect of data
sizes on the cost model. The results from our neural model are
applied to adjust the prediction of the conventional cost model.

Each unit is designed to predict the ratio of a specific relational
operator in a plan. It receives two types of inputs: the hidden state
from the previous unit if it has child operators and the input to the
original cost model of the database. The input to cost model includes
operator type (e.g. “select”, “avg” and “join”), column name, table
name, predicate and cardinality. The output of the unit includes a
hidden state of the current neural bias model and a predicated ratio
for this operator. An illustration of the unit structure of our CAB
model is provided in Appendix B.

Let Hi , I0 and I1 denote the input hidden vector, the inputs to
the cost model from the original database and sampled database.
The process can be formalized as follows:

R =
F (I0)

F (I1)
Hi+1,B,W = G(Hi ,V (C0),V (C1))

R̄ = W ∗ R + B (1)

F denotes the cost model function of the database.G is the neural
bias function and V is a function that vectorizes the input to cost
model.B andW are estimated bias andweight, used to normalize the
predicted ratio. G is currently implemented as three convolutional
layers followed by a ReLU layer. From the above equations, we can
observe that we generate an initial estimation using the cost model
and then refine it with neural estimation.

To process a query, CAB units are linked together where the
hidden state output from one unit is used as input for the next
one. Figure 5 shows an example of CAB tree for a query R ▷◁ S .
We generate our prediction for the normalized ratio by leveraging
database optimizer. For each operator in the query plan, we create
a CAB unit. It receives a hidden state from the CAB of the previous
operator in the pipeline and its another input is obtained from the
database’s cost model and metadata. One special operator is “join”,
where two hidden states are merged using an average pooling layer.
Finally, the root of the CAB tree will output the final predicted
result.
1The two databases return the same number of unique values and their estimations
on the cardinalities are proportional to their sizes. So their cost estimations are pro-
portional to the sizes

CAB UNIT for
R.σ

σ

R

π σ

S

Input to
Cost Model

CAB UNIT for
R.π

Hidden
State

Database

Average
PoolingHidden

State

CAB UNIT for
R join S

Hidden
State

CAB UNIT for
S.σ
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Figure 5: CAB for a Query Plan
One advantage of the CAB is that it has much fewer parameters

to learn. It is not required to train the whole CAB tree for each
query. Instead, an individual CAB unit is trained. Given a query
q and a series of sampled databases D = {D0,D1, ...} with differ-
ent sampling ratios, a series of training pairs can be generated as
follows.

First, based on current plan expression tree of q, we can generate
a set of sub-queries for q by creating a sub-tree rooted at each
inner node, denoted as Sub(q) = {q̄0, q̄1, ...}. For example, we can
create three sub-queries for the query in Figure 5. For each sampled
database Di ∈ D, we execute q on Di and collect response time
(or any other metric), denoted as RT , for each sub-query in Sub(q).
Thus, we generate our training set for Di as:

Tr (q,Di ) = {(q̄i ,RT (q̄i ))|∀q̄i ∈ Sub(q)}

The detailed training process of the CAB unit is shown in the
Appendix.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance ofMirror on TPC-H benchmark2, JOB benchmark3 and
the production workload of PolarDB. For TPC-H and JOB bench-
mark, experiments are conducted on a server equipped with In-
tel Xeon Processor E5 2660 v2 (25M Cache, 2.20 GHz). For the
production workload, we use the pay-as-you-go PolarDB instance
equippedwith Intel Xeon Platinum 8163 CPU (25MCache, 2.50GHz).
Two database tuning tasks, index recommendation and the cardi-
nality estimation, are tested. The model of cardinality estimation
task on Mirror is discarded due to limited space. For both tasks, we
use V100 GPU to train our model.

4.1 Index Recommendation Task
We show the performance of our proposed index tuning model on
Mirror. For comparison, we adapted four baseline approaches in the
evaluation. The first approach only builds indexes for all primary
keys, denoted as “Default”. The second one adopts a random search
to select the proper columns for indexing, sometimes a competitive
alternative for deep reinforcement learning approach [18, 24]. The

2http://www.tpc.org/tpch/
3https://github.com/gregrahn/join-order-benchmark
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Figure 6: Result on TPC-H Database

Data Size IR-Mirror-NR (per V100) Lift(mins per V100)
8 Million(0.8%) 41 mins 77 mins
16 Million(1.6%) 119 mins 186 mins
32 Million(3.2%) 314 mins 386 mins
1 Billion (100%) 45 days Not Converge

Table 1: Training Time with Varied Sampling Rate

third one, Percona4, provides a new indexing approach based on
the extensions of PostgreSQL. Finally, we include a recent deep
reinforcement learning method following the main idea of [25],
denoted as “Lift”.

In the experiment, we consider two categories of queries in the
evaluation. Namely, “Multi-column Queries” that contain a random
number of predicates on a single table and “Multi-table Join Queries”
that involvemultiple predicates andmultiple tables.We use IR-OR to
denote the method that training our index recommendation model
on the original database directly (namely, without Mirror), and
we denote the model trained on Mirror without the optimizations
as IR-Mirror. We also use IR-Mirror-NR and Mirror-CL to denote
the models trained using reward normalization and continuous
learning techniques (Mirror-CL includes all proposed optimization
techniques in Mirror).

By default, all approaches pick the top 3 columns for indexing,
because as our experiments show, the performance improvement
mainly comes from the first few indexes. We use the workload run-
ning time before and after indexing as our metric for each approach,
defined as tindex

t , where t and tindex represent the average cost of
processing the target workload without/with indexes. t is the same
for all approaches.

4.1.1 Performance on TPC-H Database. We generate a TPC-H data-
base with 1 billion tuples. To evaluate the speedup ofMirror, we vary
the sampling rate of Mirror to generate databases with 8 million,
16 million and 32 million tuples.

Table 1 shows the training time of IR-Mirror-NR and Lift. For 1
billion database, IR-Mirror-NR actually degrades to IR-OR, and Lift
fails to converge with 45 days of training. We do not include the
continuous learning time in the table, which is about 1000 minutes
on the 1 billion database for all cases. As we can see, even with
continuous learning module, Mirror still outperforms the training
from scratch approach, IR-OR.

Then, we evaluate the prediction performance of the proposed
sampling-based approach. The result is shown in Figure 6a There is

4https://www.percona.com/blog/2019/07/22/automatic-index-recommendations-in-
postgresql-using-pg_qualstats-and-hypopg/

no doubt that IR-OR returns the best results, but it only outperforms
Mirror-CL by a small margin, indicating the effectiveness of our
proposed framework. Note that Lift is discarded in the diagram,
since it cannot converge on the original 1 billion database. However,
we report the prediction performance comparison to Lift on the
small database in Appendix E.

In addition, we show the ability of recommending varied number
of indexes. The results are shown in Figure 6b and Figure 6c, where
“ALL” indicates that all columns have built an index. We can see
that for the first few indexes, Mirror-CL achieves the best speedup
on the overall performance, which reduces the workload running
time to 40% on the Multi-column query set and 42% on the Multi-
table Join query set with three indexes, respectively. Due to the
indexmaintenance overhead, for TPC-H database, the optimal index
number are 2/3 on the Multi-column query set and 3/6 on the Multi-
table Join query set, respectively.

Index number IR-Mirror IR-Mirror-NR Mirror-CL IR-OR
3 74.4% 61.4% 42.2% 41.0%
6 64.7% 38.8% 24.9% 23.8%
9 49.9% 27.2% 19.2% 18.7%
12 45.0% 18.8% 11.7% 11.4%
Table 2: Ablation Study(Multi-table Join,TPCH)

Last but not the least, we show the ablation study results of
our optimization techniques: reward normalization and continuous
learning. Table 2 shows the results on the TPC-H database for multi-
table join queries. We vary the number of recommended indexes
from 3 to 12 and show the query running time after indexing. We
observe that both reward normalization and continuous learning
techniques can effectively improve the model performances.Mirror-
CL, where both optimization techniques are applied, achieves a
similar result as the IR-OR which trains a model directly on the
original big database. However, even equipped with the continuous
learning process, the training time is an order of magnitude smaller
than the training time on the original database.

4.1.2 Performance on PolarDB Instance. In this section, we evaluate
the proposed sampling-based learning method on the pay-as-you-
go PolarDB instance. Similar to previous evaluation, we include
IR-Mirror, Mirror-CL and IR-OR approaches for comparisons.
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Figure 7: Overall Performance(PolarDB)

First, we collect 7-day’s cluster trace data from an online Po-
larDB setup. We set the sampling ratio of Mirror as 1% and show
performances of the recommended indexes. Then, to simulate the
real scenario, where distributions of workload change over time,
we insert the trace data on the 8th day and conduct the contin-
uous learning for Mirror-CL. For the changed workload, we use
Mirror-CL and IR-Mirror to denote the model transferred with and
without continuous learning respectively. The results are shown
in Figure 7, indicating that our framework can not only achieve a
good prediction result on the production workload, but also handle
gradually updated query distributions effectively.

4.2 Cardinality Estimation Task
Cardinality estimation is another important database learning task,
which estimates the number of resulted tuples after a series of rela-
tional operators. The success of a database query optimizer relies on
a precise cardinality estimation model. In this section, we show the
performance ofMirror for the cardinality estimation model. Similar
to the previous evaluation, our sampling-based method is denoted
as “Mirror-CL” We use the widely adopted JOB benchmark5 (21
tables and the largest table has 36 million rows) in the evaluation.

We use three existing sampling-based cardinality estimation
method as baselines, namely, “CS2”[36], “CS2l”[4] and “CSDL”[32].
We also include the cardinality estimation result from PostgreSQL’s
optimizer, denoted as “PG” in the diagram. In the test, we adopt
the q-error metric, defined as max(Cardq/Card

′
q ,Cardq/Card

′
q ),

where Cardq and Card ′q are the extract number and the estimated
number of records satisfying all predicates in the query q respec-
tively. Similar to previous work, we report the q-error distribution
(50%, 90%, 95%,99% and 100%) of each query workload. Table 3 re-
ports the q-error distribution for different algorithms. We can see
that the q-error of all the sampling methods is less than 10 for 90%
of all queries, which means they accurately estimate the magnitude
of the cardinality value for most queries. However, “Mirror-CL”
outperforms “PG” by 87X, “CS2” by 73X, “CS2l” by 2.3X and “CSDL”
by 1.2X at the 95%-quantile. For the upper ranges, the improvement
on the second best sampling method is around 3.

5 RELATEDWORK
Deep learning approaches have been widely applied to improve the
database capabilities, such as cost estimation [11, 16], query plan
optimization [13, 19, 21, 30] and database tuning [15, 22, 29, 38].
A detailed survey on recent advance can be found in [39]. Most
5https://github.com/gregrahn/join-order-benchmark

Algorithm 50% 90% 95% 99% Max
PG 3.37 48.9 101 781 1.23 × 103

CS2 1.16 1.42 85.3 1.14 × 103 1.38 × 105

CS2L 1.08 1.23 2.7 27.1 45
CSDL 1.11 1.17 1.39 3.85 7.1

Mirror-CL 1.02 1.13 1.17 1.2 2.13
Table 3: Q-Error of cardinality estimation algorithms on
Multi-table Join.

existing work adopt the reinforcement learning models to interact
with databases [13, 15, 19, 21, 22, 30, 38]. However, these work
uniformly only focus on small-to-medium sized databases due to
the computational overhead, unlike Mirror.

Around the index recommendation task, the previous work, such
as [3, 7, 8, 14] leveraging the database cost models, may not produce
an optimal index strategy [14]. To address this problem, learning-
based techniques are proposed. Azure takes automated corrective
actions (e.g., automatically reverting the created index) to fix 11%
query performance regressions [5] and applies a neural network
to compare the workload cost under different index configurations
instead of the what-if caller [6]. Predictive indexing [2] refines the
model using feedbacks in the next recommendation cycle. Sun et al.
[28] proposed an end-to-end cost estimator to support index recom-
mendation. NoDBA [27] proposed a deep Reinforcement Learning
controller for index selection, where workloads are assumed to be
single-tabled on a small database. LIFT [25] constructed a controller
using Double Q-learning model [31] to solve the index recommen-
dation problem on small document databases. Thus, neither of them
can be applied to huge in-production databases.

An orthogonal line of research is the index structure search. The
learned index family [12, 20, 35] is recently proposed to replace the
traditional index structures and has shown superior performance
for multiple scenarios. Our framework can be combined with them
as a full-fledged index tuning module.

6 CONCLUSIONS
In this paper, we propose Mirror to support tuning tasks on big
databases. The intuition ofMirror is to reduce the training overhead
by transferring a trained policy network. Mirror theoretically ana-
lyzes when the DL model can be transferred to the original database
for a given workload. If the theoretic bounds are violated, Mirror
adopts a continuous learning technique to refine the model on the
original database. Experiments demonstrate promising results. In
the future, we plan to implement more database learning tasks on
the Mirror.
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Figure 8: Unit Structure of CAB

A NOISE COMPUTATION
According to the theoretical analysis in Section3.1, we can compute
the noise as

δ = arдmaxmi=0 |
∑
j

log(
1

Sel(Q j ,Ci )
)2 −

∑
j

log(
1

Sel ′(Q j ,Ci )
)2 |

where Sel and Sel ′ return different selectivity estimations for D
and D ′.

The below table shows the noise bound for different confidences
ϵ on our neural model, where values of input vector are normalized
within [0, 1]. ϵ = 100% indicates that no false classification is
allowed.

ϵ = 100% ϵ = 99% ϵ = 90% ϵ = 85% ϵ = 80%
0.00812 0.0220 0.0232 0.0232 0.0323

Table 4: Maximal Noise Bound with RELU function
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Figure 9: Neural network for Continuous Learning

In Figure 9, we display the architecture of the neural network
devised for the continuous learning phase. Besides, Figure 8 shows
the unit structure of our CAB model.

Input: Database D , Workload Q
Output: CAB model

1 for i = 1 to k do
2 Di = unbiased samples of D with a random ratio for ∀qj ∈ Q

do
3 Sub(qj ) = getSubQueries(qj )
4 T r (qj , Di ) = createTrainingPairs(Sub(qj ), Di )
5 end
6 end
7 for ∀qi ∈ Q do
8 for ∀qj ∈ Sub(qi ) do
9 tr ee = CreateCABTree(qj )

10 pick two random sampled database D0 and D1
11 Train tr ee with T r (qj , D0) and T r (qj , D1)

12 end
13 end

Algorithm 1: Training of CAB Unit

C TRAINING THE CAB MODEL
The training process is summarized in Algorithm 1. During the
training process, we construct the CAB tree based on the query
plan returned by the query optimizer of database for the input
query. To reduce the training overhead, all CAB units share the
same neural parameters and hence.

D PROOF OF THEOREM 2
. csp Cost of a sequential page fetch

nsp Number of sequential page fetches
crp Cost of a random page fetch
nrp Number of random page fetches
cip Cost of accessing an index entry
nip Number of probed index entries
cop Average cost of CPU per operator
nop Number of operations involved

Table 5: Table to test captions and labels
Theorem 3. Theorem 2 restated. For a databaseD and its unbiased

sampled database D ′, if both databases adopt the same indexing
strategy, they will process a query using the same query plan with a
high probability.

Proof. We use PostgreSQL as an example6. Using the parame-
ters defined in Table 5, the database’s cost model estimates the cost
Copk of an operator opk in a query using a linear combination:

Copk = csp · nsp + crp · nrp + ctp · ntp + cip · nip + cop · nop (2)

For a given query plan P consisting of different operators, the cost
of P is the sum of the costs of all operators:

CP =
∑

opk ∈P
Copk (3)

D and D ′ will adopt the same values for all cx parameters. If we
use histograms to estimate nx , we find have ρ = D′ .cx

D .cx , where ρ is
the sampling ratio. In this way, if a plan P is the optimal for D, it
must also be the optimal one for D ′. Otherwise, we can also find a
new optimal plan for D. □
6Our analysis method can be also applied to other SQL databases due to the high
similarity of the cost functions in the systems.
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(c) Multi-table Join

Figure 10: Overall Performance(TPC-H)

S i n g l e - c o l u m n M u l t i - c o l u m n M u l t i - t a b l e  J o i n s0 %

2 0 %
4 0 %

6 0 %
8 0 %

1 0 0 %

Qu
ery

 Se
t R

uni
ng 

Tim
e R

atio

R o w s  o f  t h e  D a t a b a s e

 D e f a u l t   R a n d o m   P e r c o n a
 L i f t         I R - O R

Figure 11: Overall Perfor-
mance(JOB)
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(c) Multi-table Join

Figure 12: Index number(32 Million), TPC-H
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(c) Multi-table Join

Figure 13: Index number, JOB

E EXPERIMENTS ON THE INDEX
RECOMMENDATION MODEL

We have conducted extensive experiment study on the index rec-
ommendation task. In addition to the TPC-H benchmark, we con-
sider the JOB7, whose databases are generated based on the real
IMDB dataset, in the performance evaluation too. Besides, we also
include the Single-column Queries that only involve one predi-
cate and one table in the experiment. For each query type, the
experiments are conducted on the testing workloads where each
workload contains 50 randomly generated queries with predefined
templates. For each workload, we use the query templates of shape
SELECT ∗ FROM · · ·WHERE · · · .

In the first test, we vary the sampling ratio with 8 million(0.8%),
16 million(1.6%) and 32 million(3.2%) records, respectively. The

7https://github.com/gregrahn/join-order-benchmark

results on the TPC-H benchmark are shown in Figure 10. All ap-
proaches recommend top three beneficial indexes and we com-
pare the percentage of improvement on average running time be-
fore/after indexing. It is no doubt that IR-OR performs the best,
especially for the complex case involving multiple predicates and
multiple joins. Note that “Lift” is discarded in Figure 10c, as it does
not support joins. The results on the JOB benchmark are shown
in Figure 11. We fix the size of database and the sampling ratio
is set as 10%. Because Percona does not return any valid result
and Lift cannot be applied to multi-table scenarios, we omit them
correspondingly.

We also explore the effect of varied number of indexes. For the
TPC-H benchmark, we adopt the sampled database with 32 million
rows. As the figure shows, our approach can achieve the optimal
result compared to other baselines, significantly reducing the query
processing overhead. We also observe that the improvement of
indexes decreases when a large number of indexes have already
been built. Similarly, we show the results on the real IMDB dataset
in Figure 13, where IR-OR performs the best in all cases.
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