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Differential Privacy

n 𝐷 ∈ 𝒳!: A dataset containing 𝑛 tuples from universe 𝒳
n A mechanism ℳ is 𝜀, 𝛿 -DP if for all neighboring datasets 𝐷 ∼ 𝐷" and subset of 

outputs 𝑂, we have
Pr ℳ 𝐷 ∈ 𝑂 ≤ 𝑒# ⋅ Pr ℳ 𝐷" ∈ 𝑂 + 𝛿

n Adding noise calibrated to the global sensitivity of a query protects DP

– Given query 𝑓:𝒳! → ℝ, the mechanism ℳ 𝐷 = 𝑓 𝐷 + Lap "!
#

is 𝜀, 0 -DP.

– Δ$ = max
%,%":%∼%"

𝑓 𝐷 − 𝑓 𝐷) is the Global Sensitivity of 𝑓
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Counting/Linear Queries vs Numerical Queries

n A linear query is given by ℓ:𝒳 → 0,1 , and ℓ 𝐷 = ∑$∈& ℓ 𝑡
n A numerical query is given by 𝑤:𝒳 → ℝ, and 𝑤 𝐷 = ∑$∈&𝑤 𝑡
n Example

– The number of people with income between 𝑎 and 𝑏
𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 income ≤ 𝑏

– The total income of people whose income is between 𝑎 and 𝑏
𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 income ≤ 𝑏 ⋅ 𝑡 income

– The variance of income of people whose age is between 𝑎 and 𝑏
𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 age ≤ 𝑏 ⋅ 𝑡 income *

– The total weighted income
𝑤 𝑡 = UDF 𝑡 age , 𝑡 income ⋅ 𝑡 income
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Age Income

35 2560
20 1500
45 8170
35 5200
45 3000
... ...



Private Multiplicative Weights [Hardt et al. ’12]

n Given a dataset 𝐷 ∈ 𝒳! and a set of linear queries ℒ = ℓ', ℓ(, … , ℓ ℒ
n The private multiplicative weights mechanism has the following guarantees

– It runs in 𝑇 iterations, with each round being 𝜀+, 0 -DP and taking E𝑂 𝒳 ⋅ ℒ time
– With probability 1 − 𝛽, all queries ℓ ∈ ℒ can be answered on L𝐷 = ℳ 𝐷 within error

𝛼 = 𝑂
𝑛 log 𝒳

𝑇
+
log ⁄ℒ 𝛽

𝜀+

n Setting 𝑇 = >Θ 𝜀𝑛 and 𝜀* = Θ #
+ ,-. ⁄' 0

achieves 𝜀, 𝛿 -DP with error

𝛼 = 𝑂
𝑛 log ⁄ℒ 𝛽 log 𝒳 log ⁄1 𝛿

𝜀
= E𝑂 𝑛
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DP Numerical Queries: Normalization

n For simplicity, we consider numerical queries 𝑤:𝒳 → 0,1,2, … , Δ
– We also assume Δ is a power of 2, e.g. 2,-

n The target is to answer a set of numerical queries 𝑄 = 𝑤', 𝑤(, … , 𝑤 1 privately
n Normalization

– Given a numerical query 𝑤, define Δ. ≔ max
/∈𝒳

𝑤 𝑡

– It is clear that ℓ. 𝑡 ≔ ⁄𝑤 𝑡 Δ. ∈ 0,1 is a linear query
– Every normalized query ℓ. for 𝑤 ∈ 𝑄 can be answered by L𝐷 with error E𝑂 𝑛
– Rescaling the results, query 𝑤 can be answered with error E𝑂 𝑛 ⋅ Δ.

n Problem
– Δ. is data-independent, and can be arbitrarily large, e.g. 2,-
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DP Numerical Queries: Truncation [Huang et al., ’21]

n When 𝑄 = 𝑤 contains a single numerical query, recent work has error C𝑂 Δ2 𝐷
– Δ. 𝐷 ≔ max

/∈%
𝑤 𝑡 is an instance-specific bound

n Truncation
– Find a privatized truncation threshold 𝜏 such that

• Only E𝑂 1 tuples in 𝐷 have 𝑤 𝑡 > 𝜏
• 𝜏 ≤ Δ. 𝐷

– Define a truncated query W𝑤 𝑡 = min 𝑤 𝑡 , 𝜏
– Answer the truncated query with 𝑂 𝜏 = 𝑂 Δ. 𝐷 noise

– The truncation error 𝑤 𝐷 − W𝑤 𝐷 is also E𝑂 Δ. 𝐷
n Problem

– It is nontrivial to extend it to multiple queries
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Comparison of Error Bounds

n Normalization
– Normalize each query by Δ., and apply PMW to answer the linear queries

n Composition
– Run truncation in [Huang et al., ’21] for each 𝑤 ∈ 𝑄 with tighter privacy budgets

n Global Truncation:
– Spend a constant fraction of budget to find threshold Δ 𝐷 ≔ max

.∈2
max
/∈%

Δ 𝐷
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Mechanism Error bound for 𝒘 ∈ 𝑸 Many Queries? Query-Specific? Instance-Specific?
Normalization 5𝑂 𝑛 ⋅ Δ# ✔ ✔

Composition 5𝑂 𝑄 ⋅ Δ# 𝐷 ✔ ✔

Global truncation 5𝑂 𝑛 ⋅ Δ 𝐷 ✔ ✔

New method 5𝑂 𝑛 ⋅ Δ# 𝐷 ✔ ✔ ✔



Comparison of Error Bounds: Example

n Assume the dataset consists of integers, 𝒳 = 0,2<(

n Consider a set of range-aggregate queries with all different ranges 𝑎, 𝑏
𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 ≤ 𝑏 ⋅ 𝑡

n As there are many queries 𝑄 = Θ 𝒳 ( ≫ 𝑛, composition has a large error
n Normalization

– Δ. = max
/∈𝒳

𝑤 𝑡 = 𝑏

n Global Truncation
– Δ 𝐷 = max

.∈2
max
/∈%

𝑤 𝑡 = max 𝑡 ∈ 𝐷

n New method
– Δ. 𝐷 = max

/∈%
𝑤 𝑡 = max 𝑡 ∈ 𝐷: 𝑡 ≤ 𝑏
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Mechanism Error bound

Composition 5𝑂 𝑄 ⋅ Δ# 𝐷

Normalization 5𝑂 𝑛 ⋅ Δ#

Global truncation 5𝑂 𝑛 ⋅ Δ 𝐷

New method 5𝑂 𝑛 ⋅ Δ# 𝐷



Query- and Instance-Specific Truncation

n The sketch of our algorithm is as follows
1. Given numerical queries 𝑄, generate a set of counting queries 𝒞 𝑄
2. Run the PMW mechanism to privately answer all the queries in 𝒞 𝑄
3. From these query answers, extract the truncation threshold WΔ. 𝐷 for every 𝑤 ∈ 𝑄
4. Truncate and normalize each query 𝑤 by WΔ. 𝐷 to obtain a set of linear queries ℒ 𝑄
5. Run the PMW mechanism to privately answer all the queries in ℒ 𝑄
6. Scale the results back by WΔ. 𝐷 to get a privatized 𝑤 𝐷
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Truncation Thresholds

n We want to find HΔ2 𝐷 for query 𝑤 with the following guarantees
1. 𝑡 ∈ 𝐷:𝑤 𝑡 > WΔ. 𝐷 ≤ 2𝛼

• 𝛼 = E𝑂 𝑛 is the error in answering linear queries
• Only 𝑂 𝛼 values are truncated, each brings error 𝑤 𝑡 ≤ max

/∈%
𝑤 𝑡 = Δ. 𝐷

2. WΔ. 𝐷 ≤ 2Δ. 𝐷
• After normalizing by WΔ. 𝐷 , we answer the linear queries with error 𝛼
• When scaling the linear query back, the error is scaled by WΔ. 𝐷 = 𝑂 Δ. 𝐷

n If we can (privately) find HΔ2 𝐷 with these guarantees, it follows that any 𝑤 ∈ 𝑄 is 
answered with error 𝑂 𝛼 ⋅ Δ2 𝐷 = C𝑂 𝑛 ⋅ Δ2 𝐷
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Finding Truncation Thresholds

n We can perform a doubling search to find the truncation thresholds
n Candidates: 𝜏 ∈ 0,1,2,4,8, … , Δ
n For each candidate 𝜏, we ask the query

– 𝑐.,3 𝑡 = 𝟏 𝑤 𝑡 > 𝜏
– i.e., How many 𝑡 ∈ 𝐷 have 𝑤 𝑡 > 𝜏?

n The query can be answered with error 𝛼, so if the count is 𝑐2,A 𝐷 ≤ 𝛼, we can 
return HΔ2 𝐷 = 𝜏 so that it satisfies condition 1
– 𝑡 ∈ 𝐷:𝑤 𝑡 > WΔ. 𝐷 ≤ 2𝛼

n It is can also be shown that condition 2 is satisfied
– WΔ. 𝐷 ≤ 2Δ. 𝐷
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Combining the Two PMW Instances

n The two PMW instances are run on the same 𝐷 with different queries 𝒞 𝑄 , ℒ 𝑄
n We can combine them by feeding the union of all queries

n The counting queries 𝒞 𝑄 = 𝑐2,A|𝑤 ∈ 𝑄, 𝜏 ∈ 0,1,2,4,8, … , B(
– Where 𝑐.,3 𝑡 = 𝟏 𝑤 𝑡 > 𝜏

n The linear queries ℒ 𝑄 = ℓ2,A|𝑤 ∈ 𝑄, 𝜏 ∈ 1,2,4,8, … , Δ

– Where ℓ.,3 𝑡 = 456 . / ,3
3

= min . /
3
, 1

n There are only 𝑂 𝑄 log Δ queries to be answered by PMW

𝛼 = 𝑂
𝑛 log ⁄𝑄 log Δ 𝛽 log 𝒳 log ⁄1 𝛿

𝜀
= C𝑂 𝑛
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Decomposable Queries

n Recall that each iteration of PMW takes C𝑂 𝒳 ⋅ 𝑄 time
n For numerical queries, 𝒳 is usually large

– e.g., age ∈ [1,128] and income ∈ 1,27* , then 𝒳 = 2-+

n Decomposable queries
– We say a set of queries 𝑄 is decomposable if

• There exists an equivalence relation 𝑅 over 𝒳
• There exists a function 𝑔:𝒳 → 0,1,2, … , Δ
• Every 𝑤 ∈ 𝑄 can be written as 𝑤 𝑡 = 𝑓. 𝑡 8 ⋅ 𝑔 𝑡

for some 𝑓!: ⁄𝒳 𝑅 → 0,1
– 𝑡 8 is the equivalence class induced by 𝑅 containing 𝑡
– 𝑔 is common to the entire 𝑄, while 𝑓. is different for each 𝑤
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Age Income

35 2560
20 1500
45 8170
35 5200
45 3000
... ...



Decomposable Queries: Example

n There is a trivial decomposition for any set of queries 𝑄
– 𝑅 = { 𝑡, 𝑡 : 𝑡 ∈ 𝒳}
– ⁄𝒳 𝑅 = 𝒳
– 𝑔 𝑡 ≡ Δ
– 𝑓. 𝑡 = ⁄𝑤 𝑡 Δ

n We are interested in decompositions where ⁄𝒳 𝑅 is small
– If 𝑄 consists of queries of form

𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 age ≤ 𝑏 ⋅ 𝑡[income]
– 𝑅 puts all tuples of the same age into an equivalence class
– ⁄𝒳 𝑅 = dom age
– 𝑔 𝑡 = 𝑡[income]
– 𝑓. 𝑡 = 𝟏 𝑎 ≤ 𝑡 age ≤ 𝑏
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Age Income

35 2560
20 1500
45 8170
35 5200
45 3000
... ...



Reducing Universe Size for Decomposable Queries

n Decomposable query: 𝑤 𝑡 = 𝑓2 𝑡 C ⋅ 𝑔 𝑡
n We consider a new universe

– d𝒳 = ⁄𝒳 𝑅× 1,2,4,8, … , Δ
– Decompose 𝑔 𝑡 for every 𝑡 using binary decomposition
– Note that 𝑔 𝑡 is common to 𝑄

n e.g. Decomposing tuple (age=35, income=2560)
– We generate 2 tuples (35, 2048) and (35, 512) over d𝒳
– For any 𝑤, we have
– 𝑤 (35,2560) = 𝑓. 35 ⋅ 2560 = 𝑓. 35 ⋅ 2048 + 𝑓. 35 ⋅ 512
– We just need to run the query on the new d𝐷 over d𝒳

n A separate privacy analysis is needed 
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Improving for Queries with Structural Properties

n For special counting queries, e.g. range/half-space counting, the accuracy is better
n This also applies to our mechanism 

– 𝑓. can have structural properties
– e.g. If 𝑄 consists of queries of form

𝑤 𝑡 = 𝟏 𝑎 ≤ 𝑡 age ≤ 𝑏 ⋅ 𝑡[income]
then 𝑓. are all range queries

– As range counting has error E𝑂 1 under DP, we can achieve error E𝑂 Δ. 𝐷
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Conclusion

n We initiate the study of private data release for numerical queries

n Our mechanism achieves instance- and query-specific error C𝑂 𝑛 ⋅ Δ2 𝐷

n The error bound also leads to excellent practical performance
n For decomposable queries, the running time and accuracy can be further improved
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