Releasing Private Data for Numerical Queries

Yuan Qiu, Wei Dong, Ke Yi, Bin Wu, Feifei Li

HKUST

Alibaba Group

Differential Privacy

- $D \in \mathcal{X}^n$: A dataset containing *n* tuples from universe \mathcal{X}
- A mechanism \mathcal{M} is (ε, δ) -DP if for all neighboring datasets $D \sim D'$ and subset of outputs O, we have

 $\Pr[\mathcal{M}(D) \in O] \le e^{\varepsilon} \cdot \Pr[\mathcal{M}(D') \in O] + \delta$

- Adding noise calibrated to the global sensitivity of a query protects DP
 - Given query $f: \mathcal{X}^n \to \mathbb{R}$, the mechanism $\mathcal{M}(D) = f(D) + \operatorname{Lap}\left(\frac{\Delta_f}{\varepsilon}\right)$ is $(\varepsilon, 0)$ -DP.
 - $\Delta_f = \max_{D,D':D\sim D'} |f(D) f(D')|$ is the Global Sensitivity of f

Counting/Linear Queries vs Numerical Queries

- A <u>linear</u> query is given by $\ell: \mathcal{X} \to [0,1]$, and $\ell(D) = \sum_{t \in D} \ell(t)$
- A <u>numerical</u> query is given by $w: \mathcal{X} \to \mathbb{R}$, and $w(D) = \sum_{t \in D} w(t)$
- Example
 - The number of people with income between a and b

 $w(t) = \mathbf{1}[a \le t[\text{income}] \le b]$

– The total income of people whose income is between a and b

 $w(t) = \mathbf{1}[a \le t[\text{income}] \le b] \cdot t[\text{income}]$

- The variance of income of people whose age is between *a* and *b*

 $w(t) = \mathbf{1}[a \le t[age] \le b] \cdot t[income]^2$

- The total weighted income

 $w(t) = UDF(t[age], t[income]) \cdot t[income]$

Age	Income
35	2560
20	1500
45	8170
35	5200
45	3000

Private Multiplicative Weights [Hardt et al. '12]

- Given a dataset $D \in \mathcal{X}^n$ and a set of <u>linear</u> queries $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_{|\mathcal{L}|}\}$
- The private multiplicative weights mechanism has the following guarantees
 - It runs in T iterations, with each round being $(\varepsilon_0, 0)$ -DP and taking $\tilde{O}(|\mathcal{X}| \cdot |\mathcal{L}|)$ time
 - With probability 1β , all queries $\ell \in \mathcal{L}$ can be answered on $\widetilde{D} = \mathcal{M}(D)$ within error

$$\alpha = O\left(\frac{n\sqrt{\log|\mathcal{X}|}}{\sqrt{T}} + \frac{\log(|\mathcal{L}|/\beta)}{\varepsilon_0}\right)$$

• Setting
$$T = \widetilde{\Theta}(\varepsilon n)$$
 and $\varepsilon_0 = \Theta\left(\frac{\varepsilon}{\sqrt{T \log(1/\delta)}}\right)$ achieves (ε, δ) -DP with error $\alpha = O\left(\frac{\sqrt{n \log(|\mathcal{L}|/\beta)}\sqrt{\log|\mathcal{X}|\log(1/\delta)}}{\sqrt{\varepsilon}}\right) = \widetilde{O}(\sqrt{n})$

DP Numerical Queries: Normalization

- For simplicity, we consider numerical queries $w: \mathcal{X} \to \{0, 1, 2, ..., \Delta\}$
 - We also assume Δ is a power of 2, e.g. 2^{64}
- The target is to answer a set of numerical queries $Q = \{w_1, w_2, \dots, w_{|Q|}\}$ privately
- Normalization
 - Given a numerical query w, define $\Delta_w \coloneqq \max_{t \in Y} w(t)$
 - It is clear that $\ell_w(t) \coloneqq w(t) / \Delta_w \in [0,1]$ is a linear query
 - Every normalized query ℓ_w for $w \in Q$ can be answered by \widetilde{D} with error $\widetilde{O}(\sqrt{n})$
 - Rescaling the results, query w can be answered with error $\tilde{O}(\sqrt{n} \cdot \Delta_w)$
- Problem
 - Δ_w is data-independent, and can be arbitrarily large, e.g. 2^{64}

DP Numerical Queries: Truncation [Huang et al., '21]

• When $Q = \{w\}$ contains a single numerical query, recent work has error $\tilde{O}(\Delta_w(D))$

- $\Delta_w(D) \coloneqq \max_{t \in D} w(t)$ is an instance-specific bound
- Truncation
 - Find a privatized truncation threshold au such that
 - Only $\tilde{O}(1)$ tuples in D have $w(t) > \tau$
 - $\tau \leq \Delta_w(D)$
 - Define a truncated query $\overline{w}(t) = \min\{w(t), \tau\}$
 - Answer the truncated query with $O(\tau) = O(\Delta_w(D))$ noise
 - The truncation error $|w(D) \overline{w}(D)|$ is also $\tilde{O}(\Delta_w(D))$
- Problem
 - It is nontrivial to extend it to multiple queries

Comparison of Error Bounds

- Normalization
 - Normalize each query by Δ_w , and apply PMW to answer the linear queries
- Composition
 - Run truncation in [Huang et al., '21] for each $w \in Q$ with tighter privacy budgets
- Global Truncation:
 - Spend a constant fraction of budget to find threshold $\Delta(D) \coloneqq \max_{w \in Q} \max_{t \in D} \Delta(D)$

Mechanism	Error bound for $w \in Q$	Many Queries?	Query-Specific?	Instance-Specific?
Normalization	$ ilde{O}(\sqrt{n}\cdot\Delta_w)$	\checkmark	\checkmark	
Composition	$\tilde{O}\left(\sqrt{ Q }\cdot\Delta_w(D)\right)$		\checkmark	\checkmark
Global truncation	$ ilde{O}\left(\sqrt{n}\cdot\Delta(D) ight)$	\checkmark		\checkmark
New method	$ ilde{O}\left(\sqrt{n}\cdot\Delta_w(D) ight)$	\checkmark	\checkmark	\checkmark

Comparison of Error Bounds: Example

- Assume the dataset consists of integers, $\mathcal{X} = [0, 2^{32}]$
- Consider a set of range-aggregate queries with <u>all</u> different ranges [a, b] $w(t) = \mathbf{1}[a \le t \le b] \cdot t$
- As there are many queries $|Q| = \Theta(|\mathcal{X}|^2) \gg n$, composition has a large error
- Normalization
 - $\Delta_w = \max_{t \in \mathcal{X}} w(t) = b$
- Global Truncation
 - $\Delta(D) = \max_{w \in Q} \max_{t \in D} w(t) = \max\{t \in D\}$
- New method

$$- \Delta_w(D) = \max_{t \in D} w(t) = \max\{t \in D : t \le b\}$$

Mechanism	Error bound
Composition	$\tilde{O}\left(\sqrt{ Q }\cdot\Delta_w(D) ight)$
Normalization	$ ilde{O}(\sqrt{n}\cdot\Delta_w)$
Global truncation	$ ilde{O}\left(\sqrt{n}\cdot\Delta(D) ight)$
New method	$ ilde{O}\left(\sqrt{n}\cdot\Delta_w(D) ight)$

Query- and Instance-Specific Truncation

- The sketch of our algorithm is as follows
 - 1. Given numerical queries Q, generate a set of counting queries $\mathcal{C}(Q)$
 - 2. Run the PMW mechanism to privately answer all the queries in $\mathcal{C}(Q)$
 - 3. From these query answers, extract the truncation threshold $\overline{\Delta}_w(D)$ for every $w \in Q$
 - 4. Truncate and normalize each query w by $\overline{\Delta}_w(D)$ to obtain a set of linear queries $\mathcal{L}(Q)$
 - 5. Run the PMW mechanism to privately answer all the queries in $\mathcal{L}(Q)$
 - 6. Scale the results back by $\overline{\Delta}_w(D)$ to get a privatized w(D)

Truncation Thresholds

• We want to find $\overline{\Delta}_w(D)$ for query w with the following guarantees

- 1. $|\{t \in D: w(t) > \overline{\Delta}_w(D)\}| \le 2\alpha$
 - $\alpha = \tilde{O}(\sqrt{n})$ is the error in answering linear queries
 - Only $O(\alpha)$ values are truncated, each brings error $w(t) \le \max_{t \in D} w(t) = \Delta_w(D)$
- 2. $\overline{\Delta}_w(D) \leq 2\Delta_w(D)$
 - After normalizing by $\overline{\Delta}_w(D)$, we answer the linear queries with error α
 - When scaling the linear query back, the error is scaled by $\overline{\Delta}_w(D) = O(\Delta_w(D))$
- If we can (privately) find $\overline{\Delta}_w(D)$ with these guarantees, it follows that any $w \in Q$ is answered with error $O(\alpha \cdot \Delta_w(D)) = \tilde{O}(\sqrt{n} \cdot \Delta_w(D))$

Finding Truncation Thresholds

- We can perform a doubling search to find the truncation thresholds
- Candidates: $\tau \in \{0, 1, 2, 4, 8, ..., \Delta\}$
- For each candidate τ , we ask the query
 - $c_{w,\tau}(t) = \mathbf{1}[w(t) > \tau]$
 - i.e., How many $t \in D$ have $w(t) > \tau$?
- The query can be answered with error α , so if the count is $c_{w,\tau}(D) \le \alpha$, we can return $\overline{\Delta}_w(D) = \tau$ so that it satisfies condition 1
 - $|\{t \in D : w(t) > \overline{\Delta}_w(D)\}| \le 2\alpha$
- It is can also be shown that condition 2 is satisfied

 $- \overline{\Delta}_w(D) \le 2\Delta_w(D)$

Combining the Two PMW Instances

- The two PMW instances are run on the same D with different queries C(Q), $\mathcal{L}(Q)$
- We can combine them by feeding the union of all queries
- The counting queries $C(Q) = \left\{ c_{w,\tau} | w \in Q, \tau \in \left\{ 0, 1, 2, 4, 8, \dots, \frac{\Delta}{2} \right\} \right\}$

- Where
$$c_{w,\tau}(t) = \mathbf{1}[w(t) > \tau]$$

• The linear queries $\mathcal{L}(Q) = \left\{ \ell_{w,\tau} | w \in Q, \tau \in \{1, 2, 4, 8, \dots, \Delta\} \right\}$

- Where
$$\ell_{w,\tau}(t) = \frac{\min\{w(t),\tau\}}{\tau} = \min\left\{\frac{w(t)}{\tau}, 1\right\}$$

• There are only $O(|Q| \log \Delta)$ queries to be answered by PMW

$$\alpha = O\left(\frac{\sqrt{n\log((|Q|\log\Delta)/\beta)}\sqrt{\log|\mathcal{X}|\log(1/\delta)}}{\sqrt{\varepsilon}}\right) = \tilde{O}(\sqrt{n})$$

Decomposable Queries

Recall that each iteration of PMW takes $\tilde{O}(|\mathcal{X}| \cdot |Q|)$ time

- For numerical queries, $|\mathcal{X}|$ is usually large
 - e.g., age \in [1,128] and income \in [1,2³²], then $|\mathcal{X}| = 2^{40}$
- Decomposable queries
 - We say a set of queries Q is decomposable if
 - There exists an equivalence relation R over ${\mathcal X}$
 - There exists a function $g: \mathcal{X} \to \{0, 1, 2, \dots, \Delta\}$
 - Every $w \in Q$ can be written as $w(t) = f_w([t]_R) \cdot g(t)$ for some $f_w: \mathcal{X}/R \to [0,1]$
 - $[t]_R$ is the equivalence class induced by R containing t
 - g is common to the entire Q, while f_w is different for each w

Age	Income
35	2560
20	1500
45	8170
35	5200
45	3000

There is a trivial decomposition for any set of queries Q

Decomposable Queries: Example

- $R = \{(t,t): t \in \mathcal{X}\}$
- $\mathcal{X}/R = \mathcal{X}$
- $g(t) \equiv \Delta$
- $f_w(t) = w(t)/\Delta$
- We are interested in decompositions where $|\mathcal{X}/R|$ is small
 - If Q consists of queries of form

 $w(t) = \mathbf{1}[a \le t[age] \le b] \cdot t[income]$

- R puts all tuples of the same age into an equivalence class
- $\mathcal{X}/R = \operatorname{dom}(\operatorname{age})$
- g(t) = t[income]
- $f_w(t) = \mathbf{1}[a \le t[\text{age}] \le b]$

Age	Income
35	2560
20	1500
45	8170
35	5200
45	3000

Reducing Universe Size for Decomposable Queries

- Decomposable query: $w(t) = f_w([t]_R) \cdot g(t)$
- We consider a new universe
 - $\widehat{\mathcal{X}} = \mathcal{X}/R \times \{1, 2, 4, 8, \dots, \Delta\}$
 - Decompose g(t) for every t using binary decomposition
 - Note that g(t) is common to Q
- e.g. Decomposing tuple (age=35, income=2560)
 - We generate 2 tuples (35, 2048) and (35, 512) over $\widehat{\mathcal{X}}$
 - For any *w*, we have
 - $w((35,2560)) = f_w(35) \cdot 2560 = f_w(35) \cdot 2048 + f_w(35) \cdot 512$
 - We just need to run the query on the new \widehat{D} over $\widehat{\mathcal{X}}$
- A separate privacy analysis is needed

Age	Income
35	2560
20	1500
45	8170
35	5200
45	3000

Improving for Queries with Structural Properties

- For special counting queries, e.g. range/half-space counting, the accuracy is better
- This also applies to our mechanism
 - $\{f_w\}$ can have structural properties
 - e.g. If Q consists of queries of form $w(t) = \mathbf{1}[a \le t[age] \le b] \cdot t[income]$

then f_w are all range queries

- As range counting has error $\tilde{O}(1)$ under DP, we can achieve error $\tilde{O}(\Delta_w(D))$

Conclusion

- We initiate the study of private data release for numerical queries
- Our mechanism achieves instance- and query-specific error $\tilde{O}\left(\sqrt{n} \cdot \Delta_w(D)\right)$
- The error bound also leads to excellent practical performance
- For decomposable queries, the running time and accuracy can be further improved

References

Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A Simple and Practical Algorithm for Differentially Private Data Release. In Conference on Neural Information Processing Systems (NeurIPS).

Ziyue Huang, Yuting Liang, and Ke Yi. 2021. Instance-optimal Mean Estimation Under Differential Privacy. In Conference on Neural Information Processing Systems (NeurIPS).