PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers

Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang, Jiawang Tong
Outline

The current challenges of cloud database

The design of PolarDB Serverless and optimization

Benchmark Result
The challenge of current cloud database

- Different resources coupled
 - resource limited by physical machine
 - independent resource provisioning
 - fate sharing

- Redundant in-memory data copy

![Figure 1: monolithic machine](image1)

![Figure 2: separation of compute and storage](image2)
The challenge of current serverless database service

- CPU and memory scale simultaneously
- Long resumption time after auto-pause
- Scaling transparency
- Speed of cross-node Scaling
Outline

The current challenges of cloud database

The design of PolarDB Serverless and optimization

Benchmark Result
PolarDB Serverless architecture

✔ Fully disaggregation architecture
✔ Horizontal scaling disaggregated memory
✔ Multiple nodes share same data copy
✔ Cross nodes cache coherency
PolarDB Serverless —— Disaggregated Memory

✓ Consist of local caches, home nodes and slab nodes

✓ Support cache coherency between RW/RO node’s local caches coordinated by slab node and local caches
An example of cache invalidation

1. Set RW local cache PIB
2. Send invalidate instrument
3. Set home node PIB
4. Get RO info from PRD
56. Remote set RO local cache PIB
78. Return result
Cross-node B+Tree consistency

- Global physical latch
- Stickiness policy
- Fast path by RDMA CAS
Cross-node Snapshot Isolation with RDMA

- 1. Start Trx
 Assign trxid and CTSLog Slot

- 2. Commit Trx
 Get new CTS from TSO

- 3. Commit Trx
 Fill CTS to CTSLog

- 4. Commit Cleanout
 Fill CTS to Record/ITL

- 1. Create Readview
 Get TS From CTS

- 2. Cross RW Snapshot Read
 When the record not cleanout, get CTS from CTSLog by trxid using RDMA Remote Read

- RO Node
Page Materialization Offloading

- log is database
PolarDB Serverless —— Transparent Auto-Scaling

- Live transactions migration
- Pre-flush dirty pages
- Warm buffer pool
PolarDB Serverless —— Performance optimization

- Optimistic Locking for Cross-node B+Tree Consistency
- Index-Aware Prefetching
The current challenges of cloud database

The design of PolarDB Serverless and optimization

Benchmark Result
The performance losses in OLTP workload are at most 18.5%, 10.7% and 13.4%

The performance losses in TPC-H is significant than OLTP workload

Figure 11: Performance of mixed reads and writes with varying local memory sizes.

Figure 12: Latency of TPC-H queries (SF = 100) with varying capacities of the local cache (10 GB to 256 GB)
Memory on-demand provisioning

Throughput of PolarDB Serverless while scaling out/in the remote memory (i.e., 8GB, 80GB, 48GB, 128GB) while processing range queries.
Fast Failover

Figure 9: Recovery time for the RW with shared memory or local memory
Thanks

Yingqiang Zhang
yingqiang.zyq@alibaba-inc.com