Efficient Parallel kNN Joins for Large Data in MapReduce

Chi Zhang1 Feifei Li2 Jeffrey Jestes2

1Dept of Computer Science Florida State University
2School of Computing University of Utah

April 4, 2012
Outline

1. Introduction

2. Background: \(k \text{NN Join} \)

3. Parallel \(k \text{NN Join} \) for Multi-dimensional Data Using MapReduce
 - Exact \(k \text{NN Join} \)
 - Approximate \(k \text{NN Join} \)

4. Experiments

5. Conclusions
Outline

1 Introduction

2 Background: kNN Join

3 Parallel kNN Join for Multi-dimensional Data Using MapReduce
 • Exact kNN Join
 • Approximate kNN Join

4 Experiments

5 Conclusions
k Nearest Neighbor Join

- **k nearest neighbor join (kNN join)**
 - Given two data sets R and S, for every point q in R, kNN join returns k nearest points of q from S.

![Diagram showing k nearest neighbor join](image)
k Nearest Neighbor Join

- k nearest neighbor join (kNN join)
 - Given two data sets R and S, for every point q in R, kNN join returns k nearest points of q from S.

3-NN join for q

$$(q, p_1)$$
$$(q, p_3)$$
$$(q, p_4)$$
k Nearest Neighbor Join

- **k nearest neighbor join (kNN join)**
 - Given two data sets R and S, for every point q in R, kNN join returns k nearest points of q from S.

Find kNN in S for all points in R
k Nearest Neighbor Join

- **k nearest neighbor join (kNN join)**
 - Given two data sets R and S, for every point q in R, kNN join returns k nearest points of q from S.

- Numerous applications: knowledge discovery, data mining, spatial databases, multimedia databases, etc.

![Diagram](image)
Data Growth

Exabytes Created

Source: IDC
Data sets are growing at an exponential rate.

- A single machine cannot handle large data efficiently.
- Parallel and distributed computing is the trend.
Data sets are growing at an exponential rate.

A single machine cannot handle large data efficiently.

Parallel and distributed computing is the trend.
Rise of Distributed and Parallel Computing

- Challenges:
 - Minimize communication and computation.
 - Achieve good load balance.

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Outline

1. Introduction

2. Background: kNN Join

3. Parallel kNN Join for Multi-dimensional Data Using MapReduce
 - Exact kNN Join
 - Approximate kNN Join

4. Experiments

5. Conclusions
kNN Join

- **Exact kNN Join**
 - \(knn(r, S) \) = set of kNN of \(r \) from \(S \).
 - \(knnJ(R, S) = \{(r, knn(r, S))| \text{ for all } r \in R\} \).

- Approximate kNN Join
 - \(aknn(r, S) \) = approximate kNN of \(r \) from \(S \).
 - \(p = k \text{th NN of } r \) in \(knn(r, S) \).
 - \(p' = k \text{th NN for } r \) in \(aknn(r, S) \).
 - \(aknnJ(R, S) = \{(r, aknn(r, S))| \forall r \in R\} \).

Chi Zhang, Feifei Li, Jeffrey Jestes

EFFICIENT PARALLEL kNN JOINS FOR LARGE DATA IN MAPREDUCE
kNN Join

- **Exact kNN Join**
 - $knn(r, S) =$ set of kNN of r from S.
 - $knnJ(R, S) = \{(r, knn(r, S))| $ for all $r \in R\}.$

- **Approximate kNN Join**
 - $aknn(r, S) =$ approximate kNN of r from S.
 - $p = k$th NN of r in $knn(r, S)$.
 - $p' = k$th NN for r in $aknn(r, S)$
 - $aknn(r, S)$ is a c-approximation of $knn(r, S) : d(r, p) \leq d(r, p') \leq c \cdot d(r, p)$.
 - $aknnJ(R, S) = \{(r, aknn(r, S))| \forall r \in R\}.$
Outline

1 Introduction

2 Background: kNN Join

3 Parallel kNN Join for Multi-dimensional Data Using MapReduce
 - Exact kNN Join
 - Approximate kNN Join

4 Experiments

5 Conclusions
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.

![Diagram showing partitioning of sets R and S into blocks R_1, R_2, S_1, and S_2.]
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.
 2. Perform (BNLJ) for each possible R_i, S_j pairs of blocks

![Diagram showing partitioning of R and S into blocks R_1, R_2, S_1, and S_2.]
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.
 2. Perform (BNLJ) for each possible R_i, S_j pairs of blocks

\[
\begin{array}{c}
R \\
\downarrow \\
S \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
R_1 \\
\downarrow \\
R_2 \\
\downarrow \\
S_1 \\
\downarrow \\
S_2 \\
\end{array}
\]
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.
 2. Perform (BNLJ) for each possible R_i, S_j pairs of blocks

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.
 2. Perform (BNLJ) for each possible R_i, S_j pairs of blocks

![Diagram showing the process of BNLJ](image)
Exact kNN join: Block Nested Loop Join

- Block nested loop join (BNLJ) based method
 1. Partition R and S, each into n equal-sized disjoint blocks.
 2. Perform (BNLJ) for each possible R_i, S_j pairs of blocks.
 3. Get global kNN results from n local kNN results for every record in R.
Exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 1

(1) Divide R and S into blocks
(2) Duplicate each blocks into 2 partitions
Two-round MapReduce algorithm: Round 1

1. Divide R and S into blocks
2. Duplicate each blocks into 2 partitions

(1) Divide R and S into blocks
(2) Duplicate each blocks into 2 partitions
Exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 2

File 1

\[(r_1, s_1, d_{1,1})\]
\[\vdots\]
\[(r_3, s_1, d_{3,1})\]

\[\text{partition by record } ids\]

File 2

\[(r_1, s_7, d_{1,8})\]
\[\vdots\]
\[(r_3, s_5, d_{3,5})\]

Mapper

\[(r_1, s_1, d_{1,1})\]
\[\vdots\]

\[(r_3, s_1, d_{3,1})\]
\[\vdots\]

\[(r_1, s_7, d_{1,8})\]
\[\vdots\]

\[(r_3, s_5, d_{3,5})\]
\[\vdots\]
exact kNN join: Block Nested Loop Join

Two-round MapReduce algorithm: Round 2

File 1

(r$_1$, s$_1$, d$_1$,1)

(r$_3$, s$_1$, d$_3$,1)

Mapper

partition by record ids

(r$_1$, s$_7$, d$_1$,8)

(r$_3$, s$_5$, d$_3$,5)

File 2

Mapper

Shuffle

sort $list(s, d(r, s))$

get top $k(=2)$ results for r

Reducer

DFS

(r$_1$, s$_1$, d$_1$,1)

(r$_3$, s$_1$, d$_3$,1)

(r$_1$, s$_7$, d$_1$,7)

(r$_3$, s$_5$, d$_3$,5)

(r$_3$, s$_6$, d$_3$,6)

DFS

Reducer

(r$_1$, s$_1$, d$_1$,1)

(r$_3$, s$_1$, d$_3$,1)

(r$_1$, s$_7$, d$_1$,7)

(r$_3$, s$_5$, d$_3$,5)

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Exact kNN join: Block R-tree Join

- Use spatial index (R-tree) to improve performance
Exact kNN join: Block R-tree Join

- Use spatial index (R-tree) to improve performance
 - Build R-tree index for a block of S in a bucket to speed up kNN computations.
 - Similar to BNLJ algorithm, only need to replace BNLJ with block R-tree join (BRJ) in the first round.
Exact kNN join: Block R-tree Join

- Use spatial index (R-tree) to improve performance
 - Build R-tree index for a block of S in a bucket to speed up kNN computations.
 - Similar to BNLJ algorithm, only need to replace BNLJ with block R-tree join (BRJ) in the first round.

(1) Divide R and S into blocks
(2) Duplicate each blocks into 2 partitions
(3) Shuffle
(4) Reduce

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Exact kNN join: Block R-tree Join

- Use spatial index (R-tree) to improve performance
 - Build R-tree index for a block of S in a bucket to speed up kNN computations.
 - Similar to BNLJ algorithm, only need to replace BNLJ with block R-tree join (BRJ) in the first round.

(1) Divide R and S into blocks
(2) Duplicate each blocks into 2 partitions

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Outline

1. Introduction
2. Background: kNN Join
 • Parallel kNN Join for Multi-dimensional Data Using MapReduce
 • Exact kNN Join
 • Approximate kNN Join
3. Experiments
4. Conclusions
Approximate kNN join

- Problems with exact kNN join solution

We search for approximate solutions.

Space-filling curve based methods ([YLK10], dubbed zkNN)

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join

- Problems with exact kNN join solution
 - Too much communication and computation (n^2 buckets required)

We search for approximate solutions.

Space-filling curve based methods ([YLK10], dubbed zkNN)

DFS

R

S

Mapper

(1) Divide R and S into blocks
(2) Duplicate each blocks into 2 partitions

Shuffle

R_1 R_2

R_1 R_2

S_1 S_2

S_1 S_2

n^2 buckets required, too much cost.

BRJ

Reducer

DFS

DFS

DFS

DFS

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join

- Problems with exact kNN join solution
 - Too much communication and computation (n^2 buckets required)
 - Find solution requiring $O(n)$ buckets.

![Diagram](#)

- n^2 buckets required, too much cost.

1. Divide R and S into blocks
2. Duplicate each blocks into 2 partitions

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join

- Problems with exact kNN join solution
 - Too much communication and computation (n^2 buckets required)
- Find solution requiring $O(n)$ buckets.
 - We search for approximate solutions.
 - Space-filling curve based methods ([YLK10], dubbed zkNN)

n^2 buckets required, too much cost.

Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

$\begin{array}{c|c|c}
 p_1 & & \\
\hline
 p_4 & p_5 & \\
\hline
 p_2 & & p_3 \\
\hline
 p_6 & & \\
\end{array}$

\bullet: points in P
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

\[
\begin{array}{|c|c|}
\hline
p_1 & p_{i,1} \\
\hline
p_4 & p_{i,4} & p_5 & p_{i,5} \\
\hline
p_2 & p_{i,2} & p_3 & p_{i,3} \\
\hline
p_6 & p_{i,6} & & \\
\hline
\end{array}
\]

\begin{itemize}
\item \textbullet{} : points in P
\item \textcircled{\textbullet{}} : points in P_i
\end{itemize}
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

![Diagram of zkNN join]

- Points in P_i are transformed into Z-values and used for range queries in MapReduce.
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

\[
q_i = q + \mathbf{v}_i
\]
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

\[q_i = q + v_i \]

\[z^{-}(z_{qi}, k, P_i) \xrightarrow{z^{+}(z_{qi}, k, P_i)} B^{+}\text{-tree} \]

\[Z_{P_i} \]
Approximate kNN join: Z-order kNN join

- The idea of zkNN
 - Transform d-dimensional points to 1-D values using Z-value.
 - Map d-dimensional kNN join query to 1-D range queries.
 - Multiple random shift copies are used to improve spatial locality.
 - In practice 2 copies is already good enough.

\[q_i = q + v_i \]

\[z^{-}(z_{q_i}, k, P_i) \]

\[z^{+}(z_{q_i}, k, P_i) \]

\[C_i(q) \]

\[Z_{P_i} \]

\[B^+\text{-tree} \]

\(p_1, p_2, p_3, p_4, p_5, p_6, p_{i,1}, p_{i,2}, p_{i,3}, p_{i,4}, p_{i,5}, p_{i,6} \)

\(z_{i,1}, z_{i,2}, z_{i,3}, z_{i,4}, z_{i,5}, z_{i,6} \)

\(q_i = q + v_i \)

\(z^{-}(z_{q_i}, k, P_i) \)

\(z^{+}(z_{q_i}, k, P_i) \)

\(C_i(q) \)

\(Z_{P_i} \)

\[B^+\text{-tree} \]
Approximate kNN join: Z-order kNN join

- In our group’s previous work we derive the following guarantee for the zkNN join:

Theorem

Given a query point \(q \in \mathbb{R}^d \), a data set *\(P \subset \mathbb{R}^d \)*, and a small constant *\(\alpha \in \mathbb{Z}^+ \).* We generate \((\alpha - 1) \) random vectors \(\{v_2, \ldots, v_\alpha\} \), such that for any *\(i \)*, \(v_i \in \mathbb{R}^d \), and shift *\(P \) by these vectors to obtain \(\{P_1, \ldots, P_\alpha\} \) (\(P_1 = P \)). Then, the zkNN join returns a constant approximation for \(\text{knn}(q, P) \) in expectation.*
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
Approximate \(k \)NN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks \(n \) in each input data set)
- Partitioning by \(z \)-values:

![Diagram]

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel \(k \)NN Joins for Large Data in MapReduce
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
 - Partition input data sets R_i and S_i into \{${R_i, 1}, \ldots, {R_i, n}$\} and \{${S_i, 1}, \ldots, {S_i, n}$\} using \((n - 1)\) z-values \{${z_i, 1}, \ldots, {z_i, n}$\}

\[
\begin{align*}
&S_i, 1 \quad R_i, 1 \\
&S_i, 2 \quad R_i, 2 \\
&S_i, 3 \quad R_i, 3
\end{align*}
\]

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
 - Partition input data sets R_i and S_i into $\{R_{i,1}, \ldots, R_{i,n}\}$ and $\{S_{i,1}, \ldots, S_{i,n}\}$ using $(n - 1)$ z-values $z_{i,1}, \ldots, z_{i,n}$

small neighborhood search!!!

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
 - Partition input data sets R_i and S_i into $\{R_{i,1}, \ldots, R_{i,n}\}$ and $\{S_{i,1}, \ldots, S_{i,n}\}$ using $(n-1)$ z-values $\{z_{i,1}, \ldots, z_{i,n}\}$
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
 - Partition input data sets R_i and S_i into $\{R_{i,1}, ..., R_{i,n}\}$ and $\{S_{i,1}, ..., S_{i,n}\}$ using $(n-1)$ z-values $\{z_{i,1}, ..., z_{i,n}\}$

\[
\begin{align*}
\text{Partitioning by } z\text{-values:} & \\
\text{Partition input data sets } R_i & \text{ and } S_i \text{ into } \{R_{i,1}, ..., R_{i,n}\} \text{ and } \\
\text{} & \{S_{i,1}, ..., S_{i,n}\} \text{ using } (n-1) \text{ } z\text{-values } \{z_{i,1}, ..., z_{i,n}\}
\end{align*}
\]
Approximate kNN join: H-zkNNJ

- Apply zkNN for join in MapReduce (H-zkNNJ)
- Partition based algorithm
 - Partitioning policy:
 - To achieve linear communication and computation costs (to the number of blocks n in each input data set)
 - Partitioning by z-values:
 - Partition input data sets R_i and S_i into $\{R_{i,1}, \ldots, R_{i,n}\}$ and $\{S_{i,1}, \ldots, S_{i,n}\}$ using $(n - 1)$ z-values $\{z_{i,1}, \ldots, z_{i,n}\}$
Approximate kNN join: H-zkNNJ

- Choice of partitioning values.
 - Each block of R_i and S_i shares the same boundary so we only search a small neighborhood and minimize communication.
 - Goal: load balance.
Choice of partitioning values.
- Each block of R_i and S_i shares the same boundary so we only search a small neighborhood and minimize communication.
- Goal: load balance.
- Evenly partition R_i or S_i.
Approximate kNN join: H-zkNNJ

- Choice of partitioning values.
 - Each block of R_i and S_i shares the same boundary so we only search a small neighborhood and minimize communication.
 - Goal: load balance.
 - Evenly partition R_i or S_i.
 - Evenly partition $R_i \rightarrow O\left(\frac{|R_i|}{n} \log |S_i|\right)$
 - Evenly partition $S_i \rightarrow O(|R_i| \log |S_i|)$
Computation of partitioning values.
- Quantiles can be used for evenly partitioning a data set D.
- Sort a data set D and retrieve its $(n - 1)$ quantiles (expensive).
Approximate kNN join: H-zkNNJ

- Computation of partitioning values.
 - Quantiles can be used for evenly partitioning a data set D.
 - Sort a data set D and retrieve its $(n-1)$ quantiles (expensive).
- We propose sampling based method to estimate quantiles.
 - We proved that both estimations are close enough (within ϵN) to the original ranks with a high probability ($1-e^{-2/\epsilon}$).
Approximate kNN join: H-zkNNJ

- $H – zkNNJ$ algorithm can be implemented in 3 rounds of MapReduce.
 - Round 1: construct random shift copies for R and S, R_i and S_i, $i \in [1, \alpha]$, and generate partitioning values for R_i and S_i
Approximate kNN join: H-zkNNJ

- H–zkNNJ algorithm can be implemented in 3 rounds of MapReduce.

- Round 1: construct random shift copies for R and S, R_i and S_i, $i \in [1, \alpha]$, and generate partitioning values for R_i and S_i.

```
$\begin{array}{c}
\text{Map} \\
$\begin{array}{c}
R \\
\text{shift by } v_i \\
\text{compute } z\text{-value} \\
S
\end{array}
\end{array}$

$\begin{array}{c}
\text{DFS} \\
R_i \\
\text{sample of } i\text{th shift} \\
\widehat{R}_i
\end{array}$

$\begin{array}{c}
S_i \\
\text{sample of } i\text{th shift} \\
\widehat{S}_i
\end{array}$

$\begin{array}{c}
\text{shuffle } & \text{sort} \\
\widehat{R}_i & \widehat{S}_i
\end{array}$

$\begin{array}{c}
\text{DFS} \\
estimator 1 \\
estimator 2 \\
\text{Reduce}
\end{array}$
```

Chi Zhang, Feifei Li, Jeffrey Jestes
Approximate kNN join: H-zkNNJ

- H–zkNNJ algorithm can be implemented in 3 rounds of MapReduce.
 - Round 2: partition R_i and S_i into blocks and compute the candidate points for $\text{knn}(r, S)$ for any $r \in R$.

```
\[\begin{array}{c}
| R_i \downarrow | R_{i,1} | R_{i,2} | \ldots | R_{i,n} \\
| Si \downarrow | S_{i,1} | S_{i,2} | \ldots | S_{i,n} \\
\end{array}\]
```

- partition by R_i’s ranges
- partition by S_i’s ranges

Map
Approximate \(k \text{NN join: H-zkNNJ} \)

- \(H – zkNNJ \) algorithm can be implemented in 3 rounds of MapReduce.
 - Round 2: partition \(R_i \) and \(S_i \) into blocks and compute the candidate points for \(knn(r, S) \) for any \(r \in R \).

Retrieve \(C_i(r) \) for all \(r \in R_{i,j}, j \in [1, n] \)

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Approximate kNN join: H-zkNNJ

- $H – zkNNJ$ algorithm can be implemented in 3 rounds of MapReduce.

 - Round 3: determine $\text{knn}(r, C(r))$ of any $r \in R$ from the $(r, C_i(r))$ emitted by round 2.

Retrieve $C_i(r)$ for all $r \in R_{i,j}$, $j \in [1, n]$
Outline

1 Introduction

2 Background: \(k \text{NN Join} \)

3 Parallel \(k \text{NN Join for Multi-dimensional Data Using MapReduce} \)
 - Exact \(k \text{NN Join} \)
 - Approximate \(k \text{NN Join} \)

4 Experiments

5 Conclusions
We implement the following methods in Hadoop 0.20.2:

- **Exact Methods:**
 - The baseline solution is denoted H-$BNLJ$,
 - The improvement to the baseline solution is denoted H-BRJ.

- **Approximate Methods:**
 - Our three-round solution is denoted by H-z-$kNNJ$, (meaning “Hadoop z-value kNN Join”).
Experiments: setup

Experiments are performed in a heterogeneous Hadoop cluster with 17 machines:

1. 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
2. 6 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
3. 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
 - All machines are directly connected to a 1000Mbps switch.
 - Each slave node has 300GB hard drive space and 1GB of RAM for Hadoop daemon.
 - The chunk size of DFS is set to 128MB.
Experiments: setup

- Experiments are performed in a heterogeneous Hadoop cluster with 17 machines:
 1. 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
 2. 6 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
 - One is reserved for the master (running JobTracker and NameNode).
 3. 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
- All machines are directly connected to a 1000Mbps switch.
- Each slave node has 300GB hard drive space and 1GB of RAM for Hadoop daemon.
- The chunk size of DFS is set to 128MB.
Experiments: datasets

- **OpenStreet Map dataset:**
 - the road-networks for 50 states in U.S.
 - 160 million records.
 - preprocessed to remove duplications
 - each record consists of a 4 bytes integer id, two 4 bytes real type coordinates representing latitude and longitude, and a description information.
 - the coordinates has a positive real domain (0,100000).
 - stored in text format, 6.6GB.
Experiments: datasets

- **OpenStreet Map dataset:**
 - the road-networks for 50 states in U.S.
 - 160 million records.
 - preprocessed to remove duplications
 - each record consists of a 4 bytes integer id, two 4 bytes real type coordinates representing latitude and longitude, and a description information.
 - the coordinates has a positive real domain (0,100000).
 - stored in text format, 6.6GB.

- **Large synthetic Random-Cluster datasets:**
 - data sets have varying dimensionality (up to 30).
 - each record has a 4-byte id and float type d-dimensional coordinates.
Data set configurations

- (MXN) represents a data set configuration containing M records of R and N record of S (in 10s of millions).
Experiments: configurations and defaults

- Data set configurations
 - (MXN) represents a data set configuration containing M records of R and N record of S (in 10s of millions).

- Default values for OpenStreet dataset:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MXN)</td>
<td>data set configuration</td>
<td>(4×4)</td>
</tr>
<tr>
<td>k</td>
<td># of nearest neighbor</td>
<td>10</td>
</tr>
<tr>
<td>α</td>
<td># of shift copies</td>
<td>2</td>
</tr>
<tr>
<td>ϵ</td>
<td>the error rate of sampling</td>
<td>0.003</td>
</tr>
<tr>
<td>γ</td>
<td>the physical number of machines</td>
<td>16</td>
</tr>
</tbody>
</table>

Values for R-Cluster dataset: (2×2) is set to be the default data set configuration.
Experiments: configurations and defaults

- Data set configurations
 - (MXN) represents a data set configuration containing M records of R and N record of S (in 10s of millions).

- Default values for OpenStreet dataset:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MXN)</td>
<td>data set configuration</td>
<td>(4x4)</td>
</tr>
<tr>
<td>k</td>
<td># of nearest neighbor</td>
<td>10</td>
</tr>
<tr>
<td>α</td>
<td># of shift copies</td>
<td>2</td>
</tr>
<tr>
<td>ϵ</td>
<td>the error rate of sampling</td>
<td>0.003</td>
</tr>
<tr>
<td>γ</td>
<td>the physical number of machines</td>
<td>16</td>
</tr>
</tbody>
</table>

- Values for R-Cluster dataset:
 - (2x2) is set to be the default data set configuration.
Experiments: Approximation quality

H-$zkNNJ$: Hadoop z-value kNN Join

Approximation ratio

k values

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Approximation quality

$H-zkNNJ$: Hadoop z-value kNN Join

Recall (Precision) vs k values

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Approximation quality

H-$zkNNJ$: Hadoop z-value kNN Join

Approximation ratio vs Dimensionality for R-Cluster
Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

Recall (Precision) vs. Dimensionality

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Running time and communication cost

\(H-zkNNJ \): Hadoop z-value kNN Join
\(H-BRJ \): Hadoop Block R-tree Join

\[|R| \times |S|: 10^7 \times 10^7 \]

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of d

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of d

H-$zkNNJ$: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Conclusions

- We study efficient methods to perform kNN joins in MapReduce.
 - Exact (H-BRJ) and approximate (H-zkNNJ) algorithms are proposed.
 - H-zkNNJ performs orders of magnitude better than other methods with excellent approximation quality.
- We plan to investigate kNN joins on very high dimensions in the future.
The End

Thank You

Q and A
Approximate \(k \)NN join: \(Z \)-order \(k \)NN join

- zkNN algorithm

Algorithm 1: zkNN\((q, P, k, \alpha)\)

1. generate \(\{v_2, \ldots, v_\alpha\} \), \(v_1 = \overrightarrow{0} \), \(v_i \) is a random vector in \(\mathbb{R}^d \);
2. \(P_i = P + v_i \) \((i \in [1, \alpha]; \ \forall p \in P, \text{ insert } p + v_i \text{ in } P_i) \);
3. for \(i = 1, \ldots, \alpha \) do
 4. let \(q_i = q + v_i \), \(C_i(q) = \emptyset \), and \(z_{q_i} \) be \(q_i \)'s \(z \)-value;
 5. insert \(z^-\left(z_{q_i}, k, P_i\right) \) into \(C_i(q) \);
 6. insert \(z^+\left(z_{q_i}, k, P_i\right) \) into \(C_i(q) \);
 7. for any \(p \in C_i(q) \), update \(p = p - v_i \);
8. \(C(q) = \bigcup_{i=1}^\alpha C_i(q) = C_1(q) \cup \cdots \cup C_\alpha(q) \);
9. return \(\text{knn}(q, C(q)) \).
Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

Approximation ratio

$|R| \times |S|: 10^7 \times 10^7$

- 4x4
- 6x6
- 8x8
- 12x12
- 16x16

OpenStreet
Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Approximation quality

H-zkNNJ: Hadoop z-value kNN Join

Recall (Precision)

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Approximation quality

H-$zkNNJ$: Hadoop z-value kNN Join

Recall (Precision)

k values

OpenStreet

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of ε

![Graph showing the effect of ε on time (seconds).]
Experiments: Effect of ε

\begin{align*}
\text{Standard deviation} & \quad \varepsilon (\times 10^{-3}) \\
10^2 & \quad 0.6 \quad 1 \quad 3 \quad 10 \quad 100
\end{align*}

\[\varepsilon \times 10^{-3} \]

- R blocks
- S blocks
Experiments: Evaluation of H-BNLJ

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Evaluation of H-BNLJ

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Speedup

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Speedup

- H-zkNNJ
- H-BRJ

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

\[|R| \times |S| : 10^7 \times 10^7 \]
Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Running time and communication cost

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Running time and communication cost

\(H-zkNNJ \): Hadoop z-value kNN Join
\(H-BRJ \): Hadoop Block R-tree Join

\[\text{Data shuffled (GB)} \]

\[|R| \times |S| : 10^7 \times 10^7 \]
Experiments: Effect of d

H-zkNNJ: Hadoop z-value kNN Join

H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of d

H-zkNNJ: Hadoop z-value kNN Join
H-BRJ: Hadoop Block R-tree Join

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of d

H-$zkNNJ$: Hadoop z-value kNN Join
H-BRJ: Hadoop Block R-tree Join

![Graph showing the approximation ratio vs. dimensionality for R-Cluster.](image)
Experiments: Effect of d

H-zkNNJ: Hadoop z-value kNN Join
H-BRJ: Hadoop Block R-tree Join

Recall (Precision)
Dimensionality
R-Cluster

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of k

![Bar chart showing the time (seconds $\times 10^3$) for different k values with phases zPhase1, zPhase2, and zPhase3.]

Chi Zhang, Feifei Li, Jeffrey Jestes
Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of k

![Bar chart showing the effect of k values on the time taken for RPhase1 and RPhase2. The x-axis represents k values (10, 20, 40, 60, 80), and the y-axis represents time (seconds $\times 10^3$). The chart indicates that as k increases, the time taken for both RPhase1 and RPhase2 increases. The time for RPhase1 is generally lower than RPhase2.](image-url)
Experiments: Effect of k

![Graph showing the effect of k on time](image)

- H-zkNNJ
- H-BRJ

Time (seconds $\times 10^3$)

k values

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of k

Data shuffled (GB)

k values

- H-zkNNJ
- H-BRJ

Chi Zhang, Feifei Li, Jeffrey Jestes

Efficient Parallel kNN Joins for Large Data in MapReduce
Experiments: Effect of number of shifts α

- α values:
 - 2
 - 3
 - 4
 - 5
 - 6

- Time (seconds)

- 10^3 to 10^5

- H-zkNNJ, H-BRJ
Experiments: Effect of number of shifts α

![Graph showing data shuffled (GB) vs. α values for H-zkNNJ and H-BRJ.](image)
Experiments: Effect of number of shifts α

![Graph showing the approximation ratio for different α values.](image-url)
Experiments: Effect of number of shifts α

![Graph showing the effect of number of shifts α on recall (precision).](image)