
A Concise Representation of Range Queries

Ke Yi1 Xiang Lian1 Feifei Li2 Lei Chen1

1Dept. Computer Science and Engineering, Hong Kong U.S.T.

Clear Water Bay, Hong Kong, China

{yike,xlian,leichen}@cse.ust.hk

2Dept. Computer Science, Florida State University

Tallahassee, FL, USA

lifeifei@cs.fsu.edu

Abstract—With the advance of wireless communication tech-
nology, it is quite common for people to view maps or get related
services from the handheld devices, such as mobile phones and
PDAs. Range queries, as one of the most commonly used tools,
are often posed by the users to retrieve needful information from
a spatial database. However, due to the limits of communication
bandwidth and hardware power of handheld devices, displaying
all the results of a range query on a handheld device is neither
communication efficient nor informative to the users. This is
simply because that there are often too many results returned
from a range query. In view of this problem, we present a novel
idea that a concise representation of a specified size for the range
query results, while incurring minimal information loss, shall be
computed and returned to the user. Such a concise range query
not only reduces communication costs, but also offers better
usability to the users, providing an opportunity for interactive
exploration. The usefulness of the concise range queries is
confirmed by comparing it with other possible alternatives, such
as sampling and clustering. Then we propose algorithms to find
a good concise representation.

I. INTRODUCTION

Spatial databases have witnessed an increasing number of

applications recently, partially due to the fast advance in

the fields of mobile computing, embedded systems and the

spread of the Internet. For example, it is quite common these

days that people want to figure out the driving or walking

directions from their handheld devices (mobile phones or

PDAs). However, facing the huge amount of spatial data

collected by various devices, such as sensors and satellites,

and limited bandwidth and/or computing power of handheld

devices, how to deliver light but usable results to the clients

is a very interesting, and of course, challenging task.

Our work has the same motivation as several recent work

on finding good representatives for large query answers, for

example, representative skyline points in [7]. Furthermore,

such requirements are not specific to spatial databases. General

query processing for large relational databases and OLAP

data warehouses has posed similar challenges. For example,

approximate, scalable query processing has been a focal point

in the recent work [6] where the goal is to provide light,

usable representations of the query results early in the query

processing stage, such that an interactive query process is

possible. In fact, [6] argued to return concise representations of

the final query results in every possible stage of a long-running

query evaluation. However, the focus of [6] is on join queries

in the relational database and the approximate representation

is a random sample of the final query results. Soon we will

see, the goal of this work is different and random sampling is

not a good solution for our problem.

For our purpose, light refers to the fact that the represen-

tation of the query results must be small in size, and it is

important for two reasons. First, the client-server bandwidth

is often limited. This is especially true for mobile computing

and embedded systems, which prevents the communication

of query results with a large size. It is equally important for

applications with PCs over the Internet. The response time is

a determining factor for attracting users for using a service, as

users often have alternatives, e.g., Google Map vs. Mapquest.

Large query results inevitably slow down the response time

and blemish the user experience. Secondly, clients’ devices

are often limited in both computational and memory resources.

Large query results make it extremely difficult for clients to

process, if not impossible. This is especially true for mobile

computing and embedded systems.

Usability refers to the question of whether the user could

derive meaningful knowledge from the query results. Note

that more results do not necessarily imply better usability. On

the contrary, too much information may do more harm than

good, which is commonly known as the information overload

problem. As a concrete example, suppose that a user issues a

query to her GPS device to find restaurants in the downtown

Boston area. Most readers having used a GPS device could

quickly realize that the results returned in this case could

be almost useless to the client for making a choice. The

results (i.e., a large set of points) shown on the small screen

of a handheld device may squeeze together and overlap. It

is hard to differentiate them, let alone use this information!

A properly sized representation of the results will actually

improve usability. In addition, usability is often related to

another component, namely, query interactiveness, that has

become more and more important. Interactiveness refers to the

capability of letting the user provide feedback to the server and

refine the query results as he or she wishes. This is important

as very often, the user would like to have a rough idea for

a large region first, which provides valuable information to

narrow down her query to specific regions. In the above

example, it is much more meaningful to tell the user a few

areas with high concentration of restaurants (possibly with

additional attributes, such as Italian vs. American restaurants),

so that she could further refine her query range.

A. Problem definition

Motivated by these observations this work introduces the

concept of concise range queries, where concise collectively

represents the light, usable, and interactive requirements laid

out above. Formally, we represent a point set using a collection

of bounding boxes and their associated counts as a concise

representation of the point set.

Definition 1 Let P be a set of n points in R
2. Let P =

{P1, . . . , Pk} be a partitioning of the points in P into k

pairwise disjoint subsets. For each subset Pi, let Ri be the

minimum axis-parallel bounding box of the points in Pi. Then

the collection of pairs R = {(R1, |P1|), . . . , (Rk, |Pk|)} is
said to be a concise representation of size k for P , with P as
its underlying partitioning.

We will only return R as a concise representation of a point
set to the user, while the underlying partitioning P is only used
by the DBMS for computing such an R internally. Clearly, for
fixed dimensions the amount of bytes required to represent R
is only determined by its size k (as each box Ri could be

captured with its bottom left and top right corners).

There could be many possible concise representations for

a given point set P and a given k. Different representations

could differ dramatically in terms of quality, as with R, all
points in a Pi is replaced by just a bounding box Ri and a

count |Pi|. Intuitively, the smaller the Ri’s are, the better. In

addition, an Ri that contains a large number of points shall be

more important than one containing few points. Thus we use

the following “information loss” as the quality measure of R.

Definition 2 For a concise representation R = {(R1, |P1|),
. . ., (Rk, |Pk|)} of a point set P , its information loss is:

L(R) =

k∑

i=1

(Ri.δx + Ri.δy)|Pi|, (1)

where Ri.δx and Ri.δy denote the x-span and y-span of Ri,

respectively, and we term Ri.δx + Ri.δy as the extent of Ri.

The rationale behind the above quality measure is the

following. In the concise representation R of P , we only

know that a point p is inside Ri for all p ∈ Pi. Therefore,

the information loss as defined in (1) is the amount of

“uncertainty” in both the x-coordinate and the y-coordinate

of p, summed over all points p in P .

A very relevant problem is the k-anonymity problem from

the privacy preservation domain, which observed the problem

from a completely different angle. In fact, both k-anonymity

and the concise representation could be viewed as clustering

problems with the same objective function (1). After obtaining

the partitioning P , both of them replace all points in each sub-
set Pi with its bounding box Ri. However, the key difference

is that k-anonymity requires each cluster to contain at least k

points (in order to preserve privacy) but no constraint on the

number of clusters, whereas in our case the number of clusters

is k while there is no constraint on cluster size. Extensive

research on the k-anonymity [5], [1], [10] has demonstrated

the effectiveness of using (1) as a measure of the amount of

information loss by converting the point set P into R.

Now, with Definitions 1 and 2, we define concise range

queries.

Definition 3 Given a large point set P in R
2, a concise range

query Q with budget k asks for a concise representation R of
size k with the minimum information loss for the point set

P ∩ Q.

II. LIMITATION OF OTHER ALTERNATIVES

Clustering techniques: There is a natural connection

between the concise range query problem and the many classic

clustering problems, such as k-means, k-centers, and density

based clustering. In fact, our problem could be interpreted as a

new clustering problem if we return the underlying partitioning

P instead of the concise representationR. Similarly, for exist-
ing clustering problems one could return, instead of the actual

clusters, only the “shapes” of the clusters and the numbers of

points in the clusters. This will deliver a small representation

of the data set as well. Unfortunately, as the primary goal

of all the classic clustering problems is classification, the

various clustering techniques do not constitute good solutions

for our problem. In this section, we argue why this is the case

and motivate the necessity of seeking new solutions tailored

specifically for our problem.

Consider the example in Figure 1, which shows a typical

distribution of interesting points (such as restaurants) near a

city found in a spatial database. There are a large number of

points in a relatively small downtown area. The suburbs have

a moderate density while the points are sparsely located in the

countryside. For illustration purposes we suppose the user has

a budget k = 3 on the concise representation.

The concise representation following our definition will

partition this data set into three boxes as in Figure 1(a) (we

omit the counts here). The downtown area is summarized

with a small box with many points. The suburb is grouped

by a larger box that overlaps with the first box (note that its

associated count does not include those points contained in the

first box) and all the outliers from the countryside are put into

a very large box. One can verify that such a solution indeed

minimizes the information loss (1). The intuition is that in

order to minimize (1), we should partition the points in such

a way that small boxes could have a lot of points while big

boxes should contain as few as possible. If adding a new point

to a cluster increases the size of its bounding box then we need

to exercise extra care, as it is going to increase the “cost” of

all the existing points in the cluster. In other words, the cost of

each point in a cluster C is determined by the “worst” points

in C. It is this property that differentiates our problem with all

other clustering problems, and actually makes our definition

(a) our result. (b) k-means. (c) k-means without outliers. (d) Density based clustering.

Fig. 1. Different alternatives for defining the concise representation, k = 3.

an ideal choice for obtaining a good concise representation of

the point set.

The result of using the modified k-means approach is shown

in Figure 1(b). Here we also use the bounding box as the

“shape” of the clusters. (Note that using the (center, radius)

pair would be even worse.) Recall that the objective function

of k-means is the sum of distance (or distance squared) of each

point to its closest center. Thus in this example, this function

will be dominated by the downtown points, so all the 3 centers

will be put in that area, and all the bounding boxes are large.

This obviously is not a good representation of the point set: It

is not too different from that of, say, a uniformly distributed

data set.

One may argue that the result in Figure 1(b) is due to

the presence of outliers. Indeed, there has been a lot of

work on outlier detection, and noise-robust clustering [2].

However, even if we assume that the outliers can be perfectly

removed and hence the bounding boxes can be reduced, it

still does not solve the problem of putting all three centers in

the downtown (Figure 1(c)). As a result, roughly 1/3 of the

downtown points are mixed together with the suburban points.

Another potential problem is, what if some of the outliers are

important? Although it is not necessary to pinpoint their exact

locations, the user might still want to know their existence

and which region they are located in. Our representation

(Figure 1(a)) with k = 3 only tells the existence of these
outliers. But as we increase k, these outliers will eventually

be partitioned into a few bounding boxes, providing the user

with more and more information about them.

Lastly, Figure 1(d) shows the result obtained by a density

based clustering approach. A typical density based clustering,

such as CLARANS [9], discovers the clusters by specifying a

clustering distance ǫ. After randomly selecting a starting point

for a cluster, the cluster starts to grow by inserting neighbors

whose distance to some current point in the cluster is less than

ǫ. This process stops when the cluster cannot grow any more.

This technique, when applied to our setting, has two major

problems. First, we may not find enough clusters for a given

k (assume that there is a support threshold on the minimum

number of points in one cluster). In this example we will

always have only one cluster. Secondly, the clusters are quite

sensitive to the parameter ǫ. Specifically, if we set ǫ small,

then we will obtain only the downtown cluster (Figure 1(d));

if we set ǫ large, then we will obtain the cluster containing

both the downtown and the suburb. Neither choice gives us a

good representation of the point set.

In summary, none of the clustering technique works well

for the concise range query problem since the primary goal

of clustering is classification. An important consequence of

this goal is that they will produce clusters that are disjoint.

To the contrary, as shown in Figure 1(a), overlapping among

the bounding boxes is beneficial and often necessary for our

problem. Hence, we need to look for new algorithms and tech-

niques for the concise range query problem, which consciously

build the partitioning P to minimize the information loss.

Random sampling: Random sampling is another tempting

choice, but it is easy to see that it is inferior to our result in

the sense that, in order to give the user a reasonable idea on

the data set, a sufficient number of samples need to drawn,

especially for skewed data distributions. For example, using

k = 3 bounding boxes roughly corresponds to taking 6 random
samples. With a high concentration of points in the downtown

area, it is very likely that all 6 samples are drawn from there.

Indeed, random sampling is a very general solution that can

be applied on any type of queries. In fact, the seminal work

of [6] proposed to use a random sample as an approximate

representation of the results of a join, and designed nontrivial

algorithms to compute such a random sample at the early

stages of the query execution process. The fundamental differ-

ence between their work and ours is that the results returned

by a range query in a spatial database are strongly correlated

by the underlying geometry. For instance, if two points p and

q are returned, then all the points in the database that lie inside

the bounding box of p and q must also be returned. Such a

property does not exist in the query results of a join. Thus, it is

difficult to devise more effective approximate representations

for the results of joins than random sampling. On the other

hand, due to the nice geometric and distributional properties

exhibited by the range query results, it is possible to design

much more effective means to represent them concisely. Our

work is exactly trying to exploit these nice spatial properties,

and design more effective and efficient techniques tailored for

range queries.

III. THE ALGORITHMS

In this section, we focus on the problem of finding a concise

representation for a point set P with the minimum information

loss. First in Section III-A, we show that in one dimension,

a simple dynamic programming algorithm finds the optimal

solution in polynomial time. Then we extend the algorithm to

higher dimensions.

A. Optimal solution in one dimension

We first give a dynamic programming algorithm for com-

puting the optimal concise representation for a set of points

P lying on a line. Let p1, . . . , pn be the points of P in sorted

order. Let Pi,j represent the optimal partitioning underlying

the best concise representation, i.e., with the minimum infor-

mation loss, for the first i points of size j, i ≥ j. The optimal

solution is simply the concise representation for Pn,k, and

Pn,k could be found using a dynamic programming approach.

The key observation is that in one dimension, the optimal

partitioning always contains segments that do not overlap,

i.e., we should always create a group with consecutive points

without any point from another group in-between. Formally,

we have

Lemma 1 Pi,j for i ≤ n, j ≤ k and i ≥ j assigns p1, . . . , pi

into j non-overlapping groups and each group contains all

consecutive points covered by its extent.

Proof:We prove by contradiction. Suppose this is not the

case and Pi,j contains two groups P1 and P2 that overlap in

their extents as illustrated in Figure 2. Let Pi.xl and Pi.xr

denote the leftmost and rightmost points in Pi. Without loss

of generality we assume P1.xl ≤ P2.xl. Since P1 intersects

P2, we have P2.xl ≤ P1.xr. If we simply exchange the

membership of P1.xr and P2.xl to get P ′
1 and P ′

2, it is not

hard to see that both groups’ extents shrink and the numbers

of points stay the same. This contradicts with the assumption

that Pi,j is the optimal partitioning.

Thus, Pi,j is the partitioning with the smallest information

loss from the following i − j + 1 choices: (Pi−1,j−1, {pi}),
(Pi−2,j−1, {pi−1, pi}), . . .,(Pj−1,j−1, {pj, . . . , pi})}. Letting
L(Pi,j) be the information loss of Pi,j , the following dynamic

programming formulation becomes immediate.

L(Pi,j) = min
1≤ℓ≤i−j+1

(L(Pi−ℓ,j−1) + ℓ · |pi − pi−ℓ+1|), (2)

for 1 ≤ i ≤ n, 2 ≤ j ≤ k and j ≤ i. The base case is Pi,1 =
{{p1, . . . , pi}} for 1 ≤ i ≤ n. Since computing each L(Pi,j)
takes O(n) time, the total running time is of this algorithm
O(kn2).

Theorem 1 In one dimension, the concise representation with

the minimum information loss for a set of points P can be

found in O(kn2) time.

P2.xl P1.xr

P1

P2

P ′

2
P ′

1

Fig. 2. Proof of Lemma 1.

B. Heuristics for two or more dimensions

Due to space limitations, we will refer interested readers

to [11] for detailed descriptions of our solutions in two and

higher dimensions.

IV. RELATEDWORK

The motivation of this work is very similar to the recent

work of Jermaine et al. [6]. The focus of [6] is to produce ap-

proximate results for long-running join queries in a relational

database engine at early stages of the query execution process.

The “approximation” defined there is a random sample of the

final results. As we elaborated in Section II, due to the nice

geometric properties of range queries in spatial databases, it is

important to design more effective and efficient methods than

random sampling. The goal of this work is thus to derive such

a concise representation for range queries with the minimal

amount of information loss. With similar arguments, our work

also bears the same motivation as finding the representative

skyline points [7], however, we focus on range queries rather

than dominance points.

Section II has pointed out the close relationship between

the concise representation problem and classic clustering prob-

lems. I/O-efficient clustering algorithms have been studied in

[12], [4]. In particular, k-medoids (k-means with the constraint

that the cluster center must be a point from the input data

set) and k-centers have been extended to work for disk-based

data sets using R-trees [8]. Our work focuses on a completely

different definition of clustering, as Section II has illustrated

the limitations of using either k-means or k-centers for our

problem.

Acknowledgment: Ke Yi is supported in part by Hong

Kong Direct Allocation Grant (DAG07/08).

REFERENCES

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,
D. Thomas, and A. Zhu. Achieving anonymity via clustering. In PODS,
2006.

[2] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. RIC: Parameter-free
noise-robust clustering. TKDD, 1(3), 2007.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
1996.

[4] V. Ganti, R. Ramakrishnan, J. Gehrke, and A. Powell. Clustering large
datasets in arbitrary metric spaces. In ICDE, 1999.

[5] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymiza-
tion with low information loss. In VLDB, 2007.

[6] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate
query processing with the dbo engine. In SIGMOD, 2007.

[7] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most
representative skyline operator. In ICDE, 2007.

[8] K. Mouratidis, D. Papadias, and S. Papadimitriou. Tree-based parti-
tion querying: a methodology for computing medoids in large spatial
datasets. VLDB J., to appear, 2008.

[9] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In VLDB, 1994.

[10] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based
anonymization using local recoding. In SIGKDD, 2006.

[11] K. Yi, X. Lian, F. Li, and L. Chen. Concise range queries. Technical
report, HKUST, 2008.

[12] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. In SIGMOD, 1996.

