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In many database applications, search is still executed via form-
based query interfaces, which are then translated into SQL state-
ments to find matching records. Ranking is usually not imple-
mented unless users have explicitly indicated how to rank the match-
ing records, e.g., in the ascending order of year. Often, this ap-
proach is neither intuitive nor user-friendly (especially with many
search fields in a query form). It also requires application devel-
opers to design schema-specific query forms and develop specific
programs that understand these forms. In this work, we propose to
demonstrate the ColumbuScout system that aims at quickly build-
ing and deploying a local search engine over one or more large
databases. The ColumbuScout system adopts a search-engine-style
approach for searches over local databases. It introduces its own
indexing structures and storage designs, to improve its overall effi-
ciency and scalability. We will demonstrate that it is simple for ap-
plication developers to deploy ColumbuScout over any databases,
and ColumbuScout is able to support search-engine-like types of
search over large databases efficiently and effectively.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—Systems.

Subject: Query processing

1. INTRODUCTION
Indexing the web data and enabling the rank-based search over

such data has been a fundamental problem over the last decade.
A search engine usually provides a query interface with a single
text box that enables the search over the underlying data based on
one or more keywords. Furthermore, the search results are ranked
before returning to the users. In contrast, in numerous database
applications, search is still achieved via form-like query interfaces.
While being useful in a lot of scenarios, we argue that this approach
suffers two drawbacks. Firstly, it requires application developers to
design schema-specific query forms and develop specific programs
that understand these forms. A new, distinct query form is required
for each new search type. Secondly, this approach can be user-
unfriendly. Users may have to type values in or select values for a
large number of search fields in a query form. More importantly,
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users are restricted to the types of search that the query forms were
designed for; and in order to construct meaningful queries, users
are forced to understand the schema of the underlying databases to
some degree, either explicitly or implicitly.

In this work, we propose to demonstrate the ColumbuScout sys-
tem, where its objective is to enable any user to build and deploy a
search-engine-like system over their large databases quickly. Once
deployed, the ColumbuScout instance should be able to execute
search-engine-like queries efficiently and effectively. In particu-
lar, it should support key features like search-as-you-type, approxi-
mate search using multiple keywords, recommendations and rank-
ings based on the query keywords (beyond simple database ranking
operators, e.g., rank by year in ascending order). The challenge is
to achieve these goals with efficiency and scalability, as demanded
by the ever-increasing size of today’s large databases. This demo
will showcase our efforts in realizing this goal. Examples of run-
ning instances of ColumbuScout are available at our project web-
site [4]. The Florida Craigslist instance indexes and searches 1.7
billion records from Craigslist sites in Florida; and the LinkedIn
instance indexes and searches more than 12 millions records. In
each instance, the underlying database was obtained by scraping
open/public data from the Craigslist or the LinkedIn website re-
spectively, and casting them into a corresponding relational schema
where each record contains multiple fields (of different data types).

2. THE COLUMBUSCOUT SYSTEM
The ColumbuScout system starts with a database D and ends up

with a web-based, search-engine-like query interface. The overall
system architecture of ColumbuScout is shown in Figure 1. It con-
sists of four main modules: the parser, the merger, the Flamingo
builder, and the searcher. We will explain these modules in detail,
while going through the construction of the engine, the search, and
the updates in the ColumbuScout system. For ease of illustration,
we assume that D consists of a single table.

Construction. Building a ColumbuScout engine has three major
steps: parsing, merging, and indexing. They are the responsibility
of the parser, the merger, and the Flamingo builder respectively.

The parsing step parses D into keyword-based inverted lists, one
list per distinct keyword in D. For a distinct keyword w, its list
L(w) has the record ids for all records in D that contain w. That
said, the parser maintains a hashmap H while scanning through
records in D. An entry e in H has a (distinct) keyword w(e) as its
key, and a vector v(e) of record ids (rids) as its value, such that
every record corresponding to a rid value from v(e) contains w(e)
(in at least one of its attributes). When the parser iterates through
a record r in D, the parser views the entire record r as a single
string s, regardless of the types of its different attributes. Next, s

is tokenized into a set of keywords {w1, . . . , wt} (using the white-



Figure 1: System architecture.

space as the delimiter, except for certain special attributes such as
phone numbers), one at a time. Suppose the record id (rid) of r is
j, we insert the pairs (wi, j) for i = 1, . . . , t into H .

The main challenge is what to do when H becomes too large
(to fit in the memory). To handle this situation, we have designed
a simple yet effective storage engine that caters for massive data.
Figure 2 illustrates our idea. Basically, in a live ColumbuScout in-
stance, there are three files: the ascii keyword file, the binary rids
file, and the binary offset file. The keyword file stores all distinct
keywords {w1, . . . , wm} in sorted order from H , line delimited.
The rids file stores the lists of record ids for keywords in the key-
word file, in the same order as keywords appear in the keyword file.
At the head of each list Li for keyword ki, it also stores an integer
ni which states how many rids Li contains. Since each element in
any list Li is a rid which can be represented as an unsigned integer,
and any ni is also an unsigned integer. The entire rids file is just
a binary file of unsigned integers. Finally, we also need the binary

offset file (for facilitating the searcher), which stores m offset val-
ues. The ith value offseti stores the offset of the ith list in the rids
file, i.e., it is the starting address of ni in the rids file.

When H is first initialized, we denote this as the iteration 1.
Whenever the size of H exceeds the available memory after insert-
ing a (keyword, rid) pair, we dump H to disk and empty it. This
marks the end of the current iteration. We then resume processing
the next (keyword, rid) pair which marks the beginning of a new
iteration. That said, at the end of the ith iteration, we dump H into
two files F i

k and F i
rid, where F i

k is a (sorted) keyword file storing
all keywords from H in the ith iteration, and F i

rid is a rids file stor-
ing the corresponding rids lists. At the end of the parsing step, we
end up with a series of these pairs of files, one pair per iteration.

Suppose the parsing phase produces T iterations. The next phase
is the merging phase, where the merger merges T pairs of files into
a single pair of files, i.e., it creates a single keyword file Fk and
rids file Frid from {(F 1

k , F 1

rid), . . . , (F T
k , F T

rid)}. Since each pair
of files is sorted to begin with, this merging step is fairly easy to
execute. Consider a special case when T = 2, we maintain two
cursors I1 and I2, one cursor per keyword file (initialized at the
first record in each file respectively). We always output the smaller

keyword to the output keyword file Fk among the two keywords
currently pointed by I1 and I2. We also maintain two cursors O1

and O2, initialized at the first byte of F 1

rid and F 2

rid.
Without loss of generality, suppose the first keyword w1 in F 1

k

pointed by I1 is the first one being pushed to Fk. Clearly, the start-
ing address of n1 and L1 (the list of rids for records that contain
w1) in F 1

rid is given by O1. We can read (n1 + 1) · b bytes sequen-
tially from F 1

rid to retrieve the binary content of n1 and L1, where
b is the size of an unsigned integer. These (n1 + 1) · b bytes will
be pushed to the output file Frid. After that, we move forward I1

to the second keyword in F 1

k , and O1 by (n1 + 1) · b bytes. We

rids file
n1 rid1,1, . . . , rid1,n1
n2 rid2,1, . . . , rid2,n2

· · ·

nm ridm,1, . . . , ridm,nm

keywords
w1
w2
· · ·

wm

offsets
offset1
offset2
· · ·

offsetm

Figure 2: The storage engine.

also write the starting address of n1 and L1 in Frid as an unsigned
integer to a file Foffset. A special case is when keywords wi and
wj pointed by I1 and I2 are the same word w. When this happens,
we simply merge the corresponding lists Li and Lj (pointed by O1

and O2 in F 1

rid and F 2

rid respectively) into one list L(w), write w

to Fw and (|L(w)|, L(w)) to Frid, and move I1, I2, O1, and O2

forward accordingly. This process is then recursed, till both I1 and
I2 point to the end of F 1

k and F 2

k respectively.
One can generalize the above procedure to merging T pairs of

keywords and rids files at the same time, by maintaining T cursors
instead. This produces the keywords, the rids, and the offsets files
Fk, Frid and Foffset, just as described in Figure 2. They correspond
to the dumped content of the hashmap H as if it was built over the
entire D and never exceeded the available memory. Obviously, we
can also do this merging in parallel (two pairs in a thread) following
a divide-and-conquer scheme. More interestingly, our parsing and
merging phases are ideal for parallelization over massive data in
MapReduce, which is our ongoing effort. We omit the details.

The third and final phase is to index the keywords from Fk to
support the approximate string search and the search-as-you-type
feature. We assign unique ids to keywords in Fk based on the order-
ing in Fk , i.e., the ith keyword in Fk is assigned the id i. Flamingo
does an excellent job in indexing these unique ids so that given a
query keyword q, it can quickly retrieve all keyword ids that corre-
spond to keywords that are similar to q [1]. It also supports a variety
of approximate string match metrics, such as the edit distance, the
jaccard similarity, the cosine similarity and the dice similarity. We
incorporated the Flamingo library in the ColumbuScout system (the
Flamingo Builder in Figure 1), which builds the index over Fk and
we denote this index as the “Flamingo” index.

Search. An overview of the search process in ColumbuScout is
given in Figure 3. It starts with parsing a user query into a set
of query keywords {q1, . . . , qu}. Next, for each qi we use the
Flamingo index to get a vector wi of keyword ids that correspond
to keywords in Fk that are similar to qi (based on any of the string
similarity metrics, by default, we used the edit distance). Next, we
convert wi to a vector vi of rids, which correspond to those records
that contain at least one keyword identified by keyword ids in wi.
To do so efficiently, for every keyword id j ∈ wi, we first find its
offset value offsetj in Foffset. Note that this can be done in constant
time and IO, by using the seek functionality available in a binary
file. Specifically, the starting address of offsetj in Foffset must be
(j − 1)b, where b is the size of an unsigned integer. Given offsetj ,
we use the seek functionality again but on the binary file Frid, to
retrieve the value nj in constant time and IO. After that, we simply
load Lj sequentially by reading njb bytes from Frid coming after
nj . We insert every such Lj into vi for any j ∈ wi.

Once we have these vectors of rids, vi for qi, we need to get
the rids that appear at least τ (a system threshold) times. To find
those rids, ColumbuScout designs an algorithm that shares similar
principles to the MergeSkip algorithm in [9]. In particular, this al-
gorithm (rids Merger in Figure 3) uses a heap, binary search and
additional popping and pruning rules to achieve efficiency and scal-
ability. During this process ColumbuScout also makes sure that the
count on the number of matches do come from different keywords,
e.g., a search for “blue cat” does not return a record containing
both “fat” and “cat”, but no words that match “blue” (if τ = 2).



Figure 3: Overview of search in ColumbuScout.

Figure 4: Recommendation and ranking.

For brevity, we omit the details of this algorithm. For the current
version we have the threshold τ equal to the number of keywords
in user queries, but this is easily adjusted, even dynamically.

The rids merger stores the desired rids in a vector v. Every rid
in v corresponds to a record that matches the query (with at least
τ similar keywords between the two). Instead of simply displaying
these records back to the user, ColumbuScout performs recommen-
dations and rankings based the results of the merger. Suppose for
a rid j in v, its record rj matches α ≥ τ query keywords as de-
termined by the merger. ColumbuScout can rank the results by a
variety of methods that we have explored. Currently, by default
it ranks records that match every query keyword exactly above all
others. The rest are ranked by the combination of their α values
and the rarity of the keyword combination they matched by.

Consider the example in Figure 4, if the system is queried by
“cody orlando”, records that contain both “cody” and “orlando”
will be ranked first. Then let there be one record that contains
“cozy” and “orlando”, and three records that contain “body” and
“orlando”. The record containing “cozy” and “orlando” would be
ranked above the other three records because the keyword com-
bination “cozy” and “orlando” is more rare than the combination
of “body” and “orlando”. This ranking shows the user the rare
matches above others and will therefore effectively prune out ob-
vious and common keywords that are not effective to search by.
When there is a tie in the rarity of two records (the rarity for the
combination of matched keywords from them), we use their α val-
ues to break the tie. To estimate the rarity of a record r, we adopted
two strategy. In the first strategy, we estimate the rarity of the
matched keywords of r based on only records from v. This can
be done at the query time by dynamically building a matched-
keywords histogram while we process records in v. In the sec-
ond strategy, we estimate the rarity of the matched keywords of r

based on all records in D, which builds (and maintains) a matched-
keywords histogram incrementally over time. This can be done via
the help of the inverted lists of distinct keywords and the search
history. Due to the space constraint, we omit the details.

There are other types of ranking strategies that we have tested,
such as ranked by the rarest keyword from each matched record (in-
stead of using the combination of matched keywords). The ranking

is easily adjustable and could be also offered as a user choice in our
system. By default, we have used the above ranking method with
strategy one to decide the rarity of the combination of matched
keywords. Based on this ranking framework, we also designed a
flexible and effective recommendation module. When a search is
made (while users are typing it) the potentially matched keyword
combinations are showed, along with how many records matched
that keyword combination. They are adjusted in real time while
user is tying each single character in the search box. And just like
most popular search engines, users can select a search to see those
results. This allows users to make a search, see the results and see
what other keywords are in the data, and easily find the records they
wanted to see (i.e., refine their search). ColumbuScout also has a
prefix search that is done on the final word of the query in addi-
tion to the fuzzy search. These features together guide the users to
the results they want to see quickly and efficiently, even when they
know nothing about the schema of the underlying data.

Updates. The design of the ColumbuScout system permits efficient
updates, especially for batched insertions and deletions. The basic
idea is to create a new pair of keywords and rids files for affected
records, and use the merger in Figure 1 to merge them with the
existing keywords and rids files. Supporting batched deletions is
trickier, but can also be done efficiently after resolving some tech-
nicalities. We omit the details due to the space constraint.

Performance. We deployed two ColumbuScout instances over the
Florida Craigslist data and the LinkedIn data. The Craigslist data
has 1.7 billion records and each record has 8 keywords on aver-
age, leading to a total of 300GB of data; the LinkedIn data has 12
million records and each record has 6 to 20 keywords, leading to a
total of more than 10GB of data. There are 367,777 unique words
in our Craigslist data, and 1,930,818 unique words in our LinkedIn
data. We have tested the performance of the ColumbuScout system
on a Linux machine running ubuntu12.9 and mysql Server (5.1.41-
3). This machine has 12GB memory, 36GB swap memory, a 2TB
hard-drive, and a single Intel(R) Xeon(R) CPU X3470 @ 2.93GHz.
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Figure 5: Build time and size of ColumbuScout on Craigslist.

First, we examined the scalability of the ColumbuScout system,
where we built ColumbuScout instances over databases of different
size. In particular, we have varied the size (number of records) of
the Craigslist data from 10% to 100%, and Figure 5 shows the re-
sults on the build time and the size of the resulting ColumbuScout
instance. Clearly, both the construction cost and the size of the
ColumbuScout instances are linear to the database D (and much
smaller than |D|, for example, it is only 40GB when D is at 300GB).
The ColumbuScout system can be quickly deployed in practice.
For example, even when D has 1.7 billion records, it only takes
about 5 hours to build and deploy ColumbuScout over D; when
D has 170 million records, it only takes 30 minutes. Also, as we
have discussed, ColumbuScout can be easily built in parallel using
MapReduce, which further reduces its construction cost.

Next, we examined the query efficiency. Figure 6 summarizes
the results using the full Craigslist and LinkedIn data, where u is
the number of query keywords in one search, and k is for recom-
mendation and ranking display (top-k records). In summary, it can



search two datasets in only tens to hundreds of milliseconds, one
being 1.7 billion records and the other being 12 million (larger)
records, while making recommendations, rankings, and support-
ing search-as-you-type with approximate matching over multiple
query keywords. In essence, ColumbuScout gives the power of a
large corporation’s search engine to anyone who deploys it over
their local data.

Full Craigslist Full LinkedIn

u 1 3 1 3

k = 200 0.0286 0.0669 0.0157 0.0408

k = |D| 0.0353 0.0889 0.0506 0.1359

Figure 6: Query efficiency in ColumbuScout: seconds.

Ongoing work. There are other interesting issues we are actively
working on to improve the efficiency and the effectiveness of the
ColumbuScout system. In terms of efficiency, we have recently
implemented a parallel version of the construction module using
MapReduce. It achieves almost a linear speedup to the number
of machines in a MapReduce cluster. We are also investigating
how to use a cluster of commodity machines in the query process.
In terms of effectiveness, a critical problem we are actively work-
ing on is to enhance the ranking and recommendation modules. In
particular, we want to leverage on associations and linkage/lineage
between keywords inside the database to make ranking and recom-
mendation decisions. We are also investigating how to use certain
ontology information (either built from the underlying database or
made available through another data source such as Wikipedia) to
achieve context-aware ranking and recommendations.

3. DEMO DESCRIPTION

Construction and deployment. Our objective here is to illustrate
that it is almost effortless and very efficient to deploy ColumbuS-
cout over an existing database. We will deploy ColumbuScout
over a relational database D with tens to hundreds of thousands
of records, each with multiple attributes with different data types.

Query executions. In this part, our objective is to illustrate the
flexibility, the scalability, and the effectiveness of the ColumbuS-
cout system. At the time of the submission of this paper, we have
already deployed two ColumbuScout instances over two separate,
large databases: the Craigslist with 1.7 billion records; and the
LinkedIn data with 12 million (larger) records. In both cases, we
obtained the data through scraping (only) public and open pages
from the Craigslist (in Florida) and the LinkedIn websites. Note
that we only got a subset of available pages from these websites.
But they are already massive. A query example from the LinkedIn
data is shown in Figure 7. Both instances are deployed and running
at the same server [4], and we even offer a query interface to search
both data simultaneously using the same server!

We will also use a traditional, form-like query interface over the
aforementioned database D, so that users can compare the search
experiences between the ColumbuScout instance and the traditional
form-like query interface over the same database D.

Updates. Lastly, we will demonstrate that our system supports dy-
namic updates efficiently. This is achieved via a set of records to
be inserted into D, which triggers the updates to the ColumbuS-
cout instance running on D we have initially built. We will then
construct several queries to search for the newly inserted records.

Setup. Our demo needs a standard PC that connects to the Internet.
We will pre-configure the PC to load the ColumbuScout system
and the local database D, as well as a local web-server to host the
constructed ColumbuScout instance over D. The other two run-

Figure 7: A ColumbuScout instance.

ning instances (over the Craigslist and the LinkedIn data) will be
available via the Internet connection at our home server.

4. RELATED WORK
The ColumbuScout system builds upon previous work on sup-

porting approximate string search [1, 9] (see an excellent tutorial
in [7] and references therein) and search-as-you-type [11], by ex-
tending these techniques to incorporate the features such as search-
engine-style recommendations and rankings. In order to integrate
these various features seamlessly, efficiently, and effectively, we
have introduced new designs and auxiliary indexing structures and
storage organizations. We also plan to extend the ColumbuScout
system to incorporate some of the ideas from keyword search in
relational databases, where the focus is to find out how records
(potentially from different tables) are connected through the query
keywords [8], interested readers may refer to two excellent tutori-
als [5, 6] and references therein. These ideas have also been illus-
trated in some of the previous system demonstrations [2, 3, 10].
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