
AI Pro: Data Processing Framework for AI Models
Richie Frost†, Debjyoti Paul†, Feifei Li
School of Computing, University of Utah

Salt Lake City, Utah, USA
{rfrost,deb,lifeifei}@cs.utah.edu

Abstract—We present AI Pro, an open-source framework for
data processing with Artificial Intelligence (AI) models. Our
framework empowers its users with immense capability to
transform raw data into meaningful information with a simple
configuration file. AI Pro’s configuration file generates a data
pipeline from start to finish with as many data transformations
as desired. AI Pro supports major deep learning frameworks
and Open Neural Network Exchange (ONNX), which allows
users to choose models from any AI frameworks supported by
ONNX. Its wide range of features and user friendly web interface
grants everyone the opportunity to broaden their AI application
horizons, irrespective of the user’s technical expertise. AI Pro
has all the quintessential features to perform end-to-end data
processing, which we demonstrate using two real world scenarios.

Index Terms—data processing, pipeline, framework, realtime,
AI processing

I. INTRODUCTION

Recent advances in data science empower businesses more
than ever before, but businesses must be able to keep pace
with the demand for resources in order to benefit. Technology
giants predict that demand for data scientists will grow by 28%
by 2020. More than half of the related job positions will be
in finance, insurance, professional services and healthcare[1].
Reports suggest that academic institutions will not be able
fulfill the demand of skilled workers[2]. This gap between
demand and supply will inflate the median salary of data
scientists. Smaller companies will find it hard to attract and
afford skillful data scientists and will look for alternative
solutions and tools. During this period AI will defeat its
purpose - to empower every sector and service - if it is
not within everyone’s reach. Empowering employees with
powerful, yet easy-to-use tools is one of the best strategies
to confront an increasingly challenging future.

The world is noticing an adoption of AI from many com-
panies now and we believe them to have aggressive plans
for the future [3]. These companies are actively looking for
process automation, cognitive insights, and trend and time
series predictions for optimizing their businesses & services.
AI frameworks like Tensorflow, Torch (PyTorch), Caffe, and
Keras are empowering data scientists to build complex AI
models, solving a wide range of problems in the afore-
mentioned fields. Researchers and collaborators have trained
and made publicly available many models in computer vi-
sion, natural language processing, neural machine translation,
and speech recognition. These models are ready to make
predictions on arbitrary input data. However, putting these
models into practice requires coding expertise to deploy and
execute. Creating data pipelines with any such AI model is not

†These authors contributed equally to this work.

Figure 1: Screenshot of AI Pro.

straightforward and involves overcoming tremendous technical
challenges. To address this bottleneck, we have developed
AI Pro, an open source data processing framework.

AI Pro empowers its users to create data processing
pipelines without a single line of code. A configuration
file is enough to set up a data pipeline with multiple AI
models. Hence, we rightly attribute it configuration as code.
Our intuitive web-based user interface creates, starts, stops,
and monitors end-to-end pipelines, which enhances AI Pro’s
usability to an unrivaled level. AI Pro expresses each data flow
pipeline as a Directed Acyclic Graph (DAG) with data source,
data sink (storage), models, and other computational units as
nodes or entities. Directed edges connecting entities represent
the nature of data flow between them. For experts, AI Pro
offers pluggable custom features for data manipulation and
modification.

Consider a scenario in which a software company has
several servers to power their website and wants to perform
realtime log anomaly detection. Open source log anomaly
detection models like DeepLog and Loglizer [4], [5] can be
used, however expertise is definitely required for their inte-
gration and monitoring. AI Pro takes care of such integration
processes - connecting log data with AI models - with simple
configuration steps, without the need for expert integration
personnel. With proper configuration, output from the anomaly
detection module can be sent to data stores for information
display and further action.

Now consider another scenario involving classification and
filtering capabilities. Credit card companies use fraud transac-
tion detection tools to distinguish authentic transactions from
fraudulent and harmful transactions. The data paths taken by
authentic vs fraudulent transactions are different - authentic
transactions pass through systems normally, but potentially
fraudulent transactions require additional steps for verification.
Authentic transactions can be further processed to determine



Figure 2: Different types of Entities in AI Pro.

the category of transactions to optimize customer experience
and provide recommendation based on a user’s orientation.
AI Pro gives ample support to analyze several data paths in a
single data pipeline.

AI Pro supports Open Neural Network Exchange (ONNX)
[6], which allows its users to choose AI models from all
different AI frameworks, such as Tensorflow, Caffe, Mxnet,
Pytorch, Chainer etc. To the best of our knowledge, there
is currently no open source data processing framework like
AI Pro. To better understand the importance of AI Pro and
our contribution, we briefly list our contributions as follows:

• AI Pro is an Open Source AI Processing Framework.
• It supports batch and stream processing.
• AI Pro uses configuration as code.
• Supports ONNX [6] and major AI frameworks.
• AI Pro uses the message queue communication paradigm

for asynchronous, parallel processing.
• Web UI for pipeline management and monitoring.
We start our discussion with the system overview in Section

II. In Section III, we present AI Pro’s features in detail. We
briefly provide two practical demo scenarios in Section IV to
illustrate its potential. In Section V we present future work
and conclusion.

II. SYSTEM OVERVIEW

We have released the first version of AI Pro on Github1. In
this section, we discuss the main components of AI Pro. To
create a data pipeline, the end user creates the specifications
of the pipeline in the web UI, which then generates a config
file internally. The pipeline configuration processor then takes
that file to generate the pipeline at deploy time. The trend
of representing a data pipeline as a directed acyclic graph
(DAG) is advantageous in many ways and is widely accepted
by industry [7], [8], [9]. AI Pro’s config file is a DAG of
nodes or entities connected according to the flow of data. To
remain consistent with notation, we will continue to refer to
node as an entity. Data flow between entities is represented
with directed edges.

Entity. We define entity as an abstract component responsi-
ble for either ingestion, transformation, addition, removal, or
storage of data elements (e.g. JSON objects) in the process of
data flow.
We now present some of the basic types of entities in AI Pro
and briefly describe them as follows.
(a) Data source entity: AI Pro’s data pipeline always starts

with a data source entity. Out of the box, AI Pro provides

1https://github.com/InitialDLab/AIPro

support for various types of data sources, such as (i)
files, (ii) streaming APIs, and (iii) NoSQL Databases.
End users just need to specify the data file’s location
or provide API attributes depending on the type of data
source and AI Pro will take care of the data flow.
Configuration sample for Data Source Entity:
{

"alias" : "Twitter Streaming Source",
"api_key" : "XXXXXX",
"url": "http://example.com/api/data/",

}

(b) Model entity: A model entity is an AI model whose job is
to make predictions based on some arbitrary input. Since
it’s very common for AI models to require input in a
specific format to work, model entities encapsulate two
sub-entities: preprocessor and core AI models.

(i) Preprocessor: This entity selects a specific part of
data as an input to the AI model, then performs any
transformations necessary to prepare the data for the
format required in the AI model. Some of these formats
and transformations may include vector normalization,
matrix manipulation, unit/metric conversion, or string
list concatenation, as required by the parameters of
model’s predict function. The output of the prepro-
cessor is then handed over to the core AI entity for
processing.

(ii) Core AI: A core AI entity is a pre-trained AI model
ready to make predictions. These core AI models can
either be traditional machine learning models or deep
learning models built with Tensorflow, Keras, Pytorch,
Caffe or any other frameworks supported by ONNX.
Before starting any data pipeline, AI Pro initializes all
core AI entities by installing required libraries and
loading pre-trained models into memory. The end user
just needs to provide the name of the predict function
in the model to make it work.

We have provided some examples of the model entity in
our repository e.g. tweet sentiment analysis, tweet classi-
fication models etc. We have also started an initiative to
create a Model Zoo for AI Pro by encapsulating popular
AI models (with prediction functions) and providing
support for them in AI Pro.
Configuration sample for Model Entity:
{

"alias" : "Sentiment model, custom",
"input_attribute" : "text",
"module_file_path" : "uploads/sentiment.py",
"method_name" : "predict",
"module_classname" : "SentimenModel",
"preprocessor_filename" : "tweet_preprocessor.py",
"preprocessor_methodname": "preprocess"
"output_attribute" : "sentiment",

}

(c) Filter entity: A filter entity controls data flow in the
DAG by evaluating data attribute values on criteria pre-
specified when the pipeline configuration is built. De-
pending on the output of a filter, it can be used to
split the data flow into separate paths in the DAG,
or even discard certain data elements that fail to meet
predetermined criteria. This entity is particularly useful



with the predicted output of classification models to
channelize data elements to respective child entities for
further processing.
Configuration sample for Filter Entity:
{
"alias" : "Language filter",
"attribute" : "lang",
"value" : "en",
"condition" : "=="

}

(d) Storage entity: A data pipeline can have multiple storage
entities that store processed data at different locations.
AI Pro currently supports three types of storage entities:
(a) Regular file, (b) Database (c) Standard I/O. AI Pro
supports many standard databases, such as MongoDB,
PostgreSQL, and MySQL.
Configuration sample for storage entity:
{
"db" : "geotwitter",
"collection" : "tweets",
"alias" : "Tweets Mongo Connection",
"host" : "localhost",
"type" : "MongoDB",
"port" : 27017
}

(e) Custom entity: Experts can create custom entities for
customized transformation of data elements. One example
of such a custom entity that is included in AI Pro is
geo-location mapping. It maps latitude and longitude to
location name and country.

Edges AI Pro communicates between entities with an asyn-
chronous message queue paradigm. It is highly available,
scalable, and fault-tolerant. It supports more than one entity
to be a consumer of a message queue, which makes it easier
to duplicate data elements from one parent to multiple child
entities.

The communication between entities is horizontally scalable
when more resources are fed into it. It should also be noted
that the same instance of a pipeline as well as entities within
a single pipeline can run in parallel on different machines in
order to scale data flow.

These system components are the integral parts of AI Pro.
Each component is extensible, and the processing of one
component is independent of another.

III. FEATURE OVERVIEW

In this section we describe some of the features of AI Pro
that make it an approachable and user-oriented system. An
overview of the system is presented in the project website 2

and a demo video 3.

Web User Interface (Web UI): AI Pro provides a user-
friendly web interface for all of its operations, as shown in
figure 1. The web interface enables non-experts to create their
own pipelines and provides examples and tutorials to help
them maintain and build their pipelines. For advanced users
and core developers, there is a command line interface for
in-depth operations with finer-grained control.

2 https://www.cs.utah.edu/∼deb/aipro
3 https://youtu.be/e6imr87kdB4

Easy Pipeline Configuration: AI Pro’s motto of configu-
ration as code is fulfilled by a simple & intuitive pipeline
configurator. As the user adds entities one by one to create
a pipeline, AI Pro’s user interface aids them to fill relevant
attributes based on the entity type. It then generates a config
file from at deploy time to start the pipeline.

Pipeline Management: Currently, AI Pro provides support
to start, stop, modify, and delete a pipeline from the web
interface. Users can use AI Pro to test different models just
by swapping out different entities in the configuration. This
feature minimizes turnaround time for developers to figure out
appropriate models.

Status Monitoring: AI Pro makes it easy for the end user to
see throughput and status of a pipeline. Monitoring the status
of individual edges is also available, making it easier to debug
the point of failure if something goes wrong.

Open Source and ONNX support: We support Free and
Open-Source Software (FOSS) for the numerous benefits it
brings to the software community. We believe in community
driven software and hope AI Pro will attract collaborators
from different domains to make it even more user-friendly.
We will also continue to port AI models, especially the models
that support ONNX, into AI Pro’s Model Zoo for zero-hassle
modularity. ONNX empowers the open AI ecosystem, and our
goal is to align with it.

To adhere to the limitation of space in this demo paper, we
restrict our discussion of features here.

IV. DEMO SCENARIOS

In this section we present two demo scenarios of AI Pro
to illustrate how it simplifies data processing while working
with AI. The first demo scenario is Spatio-temporal Sentiment
Analysis on the 2016 US Presidential Election with Tweets. In
the second demo scenario, we present a system of System Log
Anomaly Detection.
A. Spatio-Temporal Sentiment Analysis with Tweets:

This demo scenario shows how the AI Pro framework
is used to predict voting patterns over time for the 2016
US Presidential Election by classifying political tweets and
then predicting the sentiment of tweets that are classified
as political. From there, tweets are supplemented with state
and county names using the geotagging entity so that voter
predictions can be visualized in aggregate by state and county.
A pictorial DAG representation of this scenario is presented
in Figure 3a.

Entity Descriptions:
1) Data source: The pipeline starts with a MongoDB

Database as the data source. In the configuration file,
we list the required attributes to connect to our database
in MongoDB and added an optional attribute projection
to collect only the text, language, date, and geolocation
from each individual tweet.

2) Political filter: Data then flows to a filter entity to only
include tweets that were written in English.

https://www.cs.utah.edu/~deb/aipro
https://youtu.be/e6imr87kdB4


(a) Sentiment Analysis. (b) Log Anomaly Detection.

Figure 3: System Architecture of Demo Scenarios.
3) Tweet classification model: The tweet classification model

classifies the text into one of three categories: democratic,
republican, or non-political. Each data element is then
passed to the next filter in the pipeline.

4) Filter entity: Based on the output of the tweet classifi-
cation model, this filter determines which data elements
pass to the next entity and which are dropped. We only
keep tweets that are classified as democratic or republi-
can, and pass them to the sentiment analysis model.

5) Sentiment analysis model entity: Tweets that passed
the above filtering conditions are then fed into a pre-
trained sentiment analysis model. This model predicts
how strongly positive or negative the emotion is in the
tweet, on a scale of 0 to 1, where 0 is negative and 1
is positive. We also keep track of whether the tweet is
democratic or republican, and use that to show sentiment
towards each political party in order to approximate future
potential voting trends.

6) Geotagging custom entity: All data elements are then
passed through a geotagging entity, where it maps a tweet
to a county, state and country based on its latitude and
longitude attributes. It also appends those attributes to
each data element.

7) Data storage entity: Enriched data elements with informa-
tion from AI models and custom entities are now stored
in a MongoDB with this entity.

Enriched data, stored in MongoDB, is now ready for analyt-
ics. We used Spatial In-Memory Big-data Analytics (Simba)
[10] for online analytics and presented it with an interactive
web interface 4.
B. System Log Anomaly Detection:

Log anomaly detection is an essential step towards building
a secure and reliable system. This demo is an interesting
scenario where the log anomaly detection model continuously
learns as we discover false positives from the system and use
those to retrain the model. [11]. A schematic representation of
the system architecture is presented in Figure 3b.

Entity Descriptions:
1) Data source entity: The log entries from a log file are

fed into the system through this entity. The data elements
contain timestamp and log as attributes.

4http://estorm.org

2) Log parser model: The preprocessor inputs log text to
the log parser, which outputs the log key and a list
of parameter values. The data elements attach these
attributes to pass it to the child entity.

3) Anomaly detection model: The anomaly detection model
takes input as a batch of keys and a corresponding list
of parameter values. The preprocessor creates chrono-
logically sorted batches of data elements to feed into
the anomaly detection model. If the model detects any
anomaly, its output is true, otherwise the output is false.
This data is then saved under the anomaly attribute.

4) Anomaly filter: If the attribute value of anomaly is true,
a notification is sent to an end user with the anomalous
log messages.

5) Training data source: When end users find the anomaly
detected to be a false positive, end users write it to a
training data file. The training data source then reads false
positives entries and feeds them to the anomaly detection
model in training mode instead of predict mode.

These interesting scenarios show the power of AI Pro.
AI Pro can also be used for scenarios like realtime object
detection in the surrounding environment, with a speech
synthesis module to aid the hearing and vision impaired.

V. CONCLUSION

We presented AI Pro, an open source AI data processing
framework for the community. With the demo scenarios we
have presented, we believe that AI Pro has the potential to
help the industry flourish with the many benefits of AI. In
future, we will continue to make it even more user friendly
and port as many AI models to AI Pro’s Model Zoo as possible
for plug and play potential.

REFERENCES

[1] S. Miller and D. Hughes, “The quant crunch: How the demand for data
science skills is disrupting the job market,” Burning Glass Technologies,
2017.

[2] InsideBigdata, “Infographic: The data scientist shortage - insidebigdata,”
accessed 8 Nov 2018. [Online]. Available: https://insidebigdata.com/
2018/08/19/infographic-data-scientist-shortage/

[3] HBR, “3 things ai can already do for your company,”
accessed 10 Nov 2018. [Online]. Available: https://hbr.org/2018/
01/artificial-intelligence-for-the-real-world

[4] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: system log
analysis for anomaly detection,” in Software Reliability Engineering
(ISSRE) 2016. IEEE, 2016.

[5] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010.

[6] onnx.ai, “Open neural network exchange (onnx),” Sep 2017. [Online].
Available: https://onnx.ai

[7] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, K. Thiel, and B. Wiswedel, “Knime-the konstanz information
miner: version 2.0 and beyond,” SIGKDD explorations Newsletter, 2009.

[8] T. Kosar and M. Livny, “Stork: Making data placement a first class citi-
zen in the grid,” in Distributed Computing Systems, 2004. Proceedings.
24th International Conference on. IEEE, 2004.

[9] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache tez: A unifying framework for modeling and building data
processing applications,” in SIGMOD 2015. ACM, 2015.

[10] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in SIGMOD 2016. ACM, 2016.

[11] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in SIGSAC 2017.
ACM, 2017.

http://estorm.org/
https://insidebigdata.com/2018/08/19/infographic-data-scientist-shortage/
https://insidebigdata.com/2018/08/19/infographic-data-scientist-shortage/
https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
https://hbr.org/2018/01/artificial-intelligence-for-the-real-world
https://onnx.ai

	Introduction
	System Overview
	Feature Overview
	Demo Scenarios
	Spatio-Temporal Sentiment Analysis with Tweets:
	System Log Anomaly Detection:

	Conclusion
	References

