X-Engine
An Optimized Storage Engine for Large-scale E-commerce Transaction Processing

Authors: Gui Huang Xuntao Cheng Jianying Wang Yujie Wang Dengcheng He Tieying Zhang Feifei Li Sheng Wang Wei Cao Qiang Li

Presenter: Xuntao Cheng
DB for the e-commerce

• Storage cost
 Business-critical data
 Money burning SSDs

• Transactions
 Mostly read-intensive
 Ordinary days v.s. promotions

Select
Insert/Update

Marketing operations
The tsunami problem

Response time
Normalized TPS

0 0.25 0.50 0.75 1.00 1.25
23:30 23:40 23:50 00:00 00:10 00:20 00:30
Time

Response time (ms)
Normalized TPS

122 x spike
491 K sales transactions per second

11 Nov, 2018
Record temperatures

Record accesses per hour
LSM-tree [O’Neil 1997]

New data

Insert

DRAM

Main memory

Merge

Merge/Compaction

SSDs

Secondary storages

HDDs
X-Engine architecture

- Multi-version records with temperatures
- Logs first
- Specialized processors
Accessing hot records

Multi-version memtable

- Linked list for versions of newly inserted records
- Caches for flushed hot records

Row/block caches
Optimizing the write path

• Asynchronously buffering changes in transactions first
• Tuning thread-level parallelism for disk I/Os and memory writes
Slimming compactions

- Move pointers, not data
- Merge small blocks
 - If not possible, split them
Storage cost

- Aggressive compressions on cold records
- Merge cold records only
- Dedicated compactions to reduce memory fragmentations

~50% space reduction
Summary of optimizations

• Optimizing the write path
 • Asynchronous writes in transactions
 • Multi-staged pipeline
 • Fast flush

• Reducing write/space amplifications
 • Small-size extents
 • Date reuse in compactions
 • FPGA-accelerated compactions
 • Incremental cache replacement

• Optimizing the read path
 • Caches (row, block)
 • Multi-version memtables
 • Multi-version metadata index
Experimental setup

• Machines
 • Two 16-core Intel E5-2652 processors @ 2.3 GHz
 • 512 GB DDR4 main memory
 • A RAID of three 1TB SSDs

• Workloads
 • X-Bench: a self-developed stress-testing benchmark toolkit, capable of synthesizing e-commerce transactions
 • Dbbench for key-value tests
 • Sysbench for SQL tests
How fast can we achieve

• 11 times faster than synchronous writes
• CPU efficiency ↑
E-commerce transactions

Plug X-Engine into MySQL, and compare it with other MySQL alternatives:

- Similar performance with InnoDB in non-promotional workload.
- Outperforms InnoDB in promotional workload.
Peak in-memory performance

X-Engine has outstanding memory-only performance.
Row and block caches

Row cache is very impactful for highly skewed point queries, which are common in e-commerce workload.
Range lookups

Range scans are drawbacks in LSM-tree systems. However, they are minor in e-commerce workloads.
Challenges

• Delayed compactions

• Write amplification

• Identification of cold records

• Benchmarking
Q&A

微信群

技术交流钉钉群

微信公众号
Backup slides
Data reuse in compactions

Small-size extents unleash more opportunities for data reuse during compaction.