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Abstract

In this paper we discussa new type of query in Spatial Databases, called the Trip Planning Query
(TPQ). Given a set of points of interest P in space, where each point belongsto a specic category,
a starting point S and a destination E, TPQ retrieves the best trip that starts at S, passesthrough
at least one point from ead category, and ends at E. For example, a driver traveling from Boston to
Providence might want to stop to a gas station, a bank and a post oce on his way, and the goal is
to provide him with the best possible route (in terms of distance, trac, road conditions, etc.). The
dicult y of this query lies in the existence of multiple choicesper category. In this paper, we study fast
approximation algorithms for TPQ in a metric space. We provide a number of approximation algorithms
with approximation ratios that depend on either the number of categories,the maximum number of points
per category or both. Therefore, for di eren t instances of the problem, we can choosethe algorithm with
the best approximation ratio, sincethey all run in polynomial time. Furthermore, we use some of the
proposed algorithms to derive e cien t heuristics for large datasets stored in external memory. Finally,
we give an experimental evaluation of the proposedalgorithms using both synthetic and real datasets.

1 Intro duction

Spatial databaseshas beenan active area of researt in the last two decadesand many important results
in data modeling, spatial indexing, and query processingtechniques have beenreported [31, 19, 42, 39, 44,
28, 38, 4, 20, 29]. Despite thesee orts, the queriesthat have beenconsideredso far concertrate on simple
range and nearestneighbor queriesand their variants. However, with the increasinginterest in intelligent
transportation and modern spatial database systems, more complex and advanced query typesneedto be
supported.

In this paper we discussa novel query in spatial databases,the Trip Planning Query (TPQ). Assume
that a databasestoresthe locations of spatial objects that belongto one or more categoriesfrom a xed set
of categoriesC. The user speci es two points in space,a starting point S and a destination point E, and a
subsetof categoriesR, (R C), and the goalisto nd the best trip (route) that starts at S, passeshrough
exactly one point from ead categoryin R and endsat E. An example of a TPQ is the following: A user
plans to travel from Boston to Providence and wants to stop at a supermarket, a bank, and a post o ce.
Given this query, a databasethat storesthe locations of objects from the categoriesabove (as well as other
categories) should compute e cien tly a feasibletrip that minimizes the total traveling distance. Another
possibility is to provide a trip that minimizes the total traveling time.

E cien t TPQ evaluation could becomean important new feature of advancednavigation systemsand can
prove useful for other geographicapplications ashasbeenadvocatedin previouswork [12]. For instance, state
of the art mapping serviceslike MapQuest, Google Maps, and Microsoft Streets & Trips, currently support
gueriesthat specify a starting point and only one destination, or a humber of user speci ed destinations.
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Figure 1: A route from Boston Univ ersity (1) to Boston downtown (5) that passesby a gasstation (2), an ATM (3),
and a Greek restaurant (4) that have beenexplicitly speci ed by the userin that order. Existing applications do not
support route optimization, nor do they give suggestionsof more suitable routes, like the one preserted to the right.

The functionality and usefulnessof such systemscan be greatly improved by supporting more advanced
query types,like TPQ. An examplefrom Streets & Trips is showvn in Figure 1, where the user has explicitly
chosena route that includes an ATM, a gasstation and a Greek restaurant. Clearly, the system could not
only optimize this route by re-arranging the order in which these stops should be made, but it could also
suggestalternativ es,basedon other options available (e.g., from a large number of ATMs that are shavn on
the map), that the user might not be aware of.

TPQ can be consideredas a generalization of the Traveling Salesmanproblem (TSP) [1, 2, 10] which
is NP-hard. The reduction of TSP to TPQ is straightforward. By assumingthat ewvery point belongs
to its own distinct category, any instance of TSP can be reduced to an instance of TPQ. TPQ is also
closely related to the group minimum spanning/steiner tree problems [26, 22, 16, 17], as we discusslater.
From the current spatial databasequeries, TPQ is mostly related to time parameterizaed and continuous NN
queries[5, 43, 38, 39|, where we assumethat the query point is moving with a constart velocity and the
goalis to incremenrtally report the nearestneighbors over time asthe query movesfrom an initial to a nal
location. However, none of the methods developed to answer the above queriescan be usedto nd a good
solution for TPQ.

We would like to point out that TPQ hasalsoapplications beyond transportation systems. Considerthe
following problem: Given a computer network and a set of jobs where eadh job can be executedonly in a
subsetof the nodesin the network (i.e., ead job de nes a category and a node can belongto one or more
categories),we would liketo nd a shortest path that will visit at least one node from ead category, given
a subsetof the jobs, starting and nishing at speci ed nodes.

Contributions. This paper proposesa novel type of query in spatial databasesand studies methods for
answering this query e cien tly. Approximation algorithms that achieve various approximation ratios are
preseried, basedon two important parameters: The total number of categoriesm and the maximum category
cardinality . In particular:

We intro duce four algorithms for answering TPQ queries,with various approximation ratios in terms
of m and . We give two practical, easyto implement solutions bettern suited for external memory
datasets, and two more theoretical in nature algorithms that give tighter answers, better suited for
main memory evaluation.

We present various adaptations of these algorithms for practical scenarios,where we exploit existing
spatial index structures and transportation graphsto answer TPQs.

We perform an extensive experimental evaluation of the proposedtechniques on real transportation
networks and points of interest, aswell ason synthetic datasetsfor completeness.



Paper Organization: The rest of the paper is organized as follows: Section 2 givesthe problem formu-
lation and related work. The approximation algorithms and their approximation bounds are preserted in
Section3. Section4 presernts the implementation of the approximation algorithms for large spatial databases.
Finally, a summary of an experimental ewvaluation of the proposedalgorithms using both synthetic and real
datasetsis preserted in Section 6.

2 Preliminaries

This section de nes formally the TPQ problem and intro ducesthe basic notation that will be usedin the
rest of the paper. Furthermore, a conciseoverview of related work is presened.

2.1 Problem Form ulation

We consider solutions for the TPQ problem on metric graphs Given a connectedgraph G(V;E) with n

with c(vi;:::;vp) 0.

Denition 1. G is a metric graphif it satis es the following conditions:
Loc(vi;vi) =00 v =
2. ¢c(vi; Vi) = c(vj;vi)
3. The triangle inequality c(vi;vi) + c(vi;;Vj)  C(Vi;Vj)

Given a set of m categoriesC= fCy;:::;Cng (wherem n) and a mapping function :v; ! C; that

Denition 2. GivenasetR C (R = fR1;R2;:::;RkQ), a starting vertex S and an ending vertex E,

vertex from each category in R (i.e., [ X, (w) = R) and hasthe minimum possiblecost ¢(T) (i.e., for any
other feasibletrip T © satisfying the condition alove, ¢(T) ¢(T9).

In the rest, the total number of vertices is denoted by n, the total number of categoriesby m, and the
maximum cardinality of any category by . For easeof exposition, it will be assumedthat R = C, thus
k = m. Generalizationsfor R C are straightforward (as will be discussedshortly).

2.2 Related Work

In the context of spatial databases,the TPQ problem has not been addressedbefore. Most researh has
concertrated on traditional spatial queriesand their variants, namely range queries[20], nearestneighbors
[15, 21, 31], continuous nearestneighbors [5, 39, 43|, group nearestneighbors [28], reversenearestneighbors
[24], etc. All thesequeriesare fundamertally dierent from TPQ sincethey do not considerthe computation
of optimal paths connecting a starting and an ending point, given a graph and intermediate points.
Researt in spatial databasesalso addressesapplications in spatial networks represeried by graphs,
instead of the traditional Euclidean space. Recert papers that extend various types of queriesto spatial
networks are [29, 23, 32]. Most of the solutions therein are basedon traditional graph algorithms [10, 25].
Clustering in a road network database has been studied in [45], where a very e cien t data structure was
proposedbasedon the ideasof [33]. Likewise,here we study the TPQ problem on road networks, as well.
The Traveling SalesmanProblem (TSP) hasreceived a lot of attention in the last thirt y years. A simple
polynomial time 2-approximation algorithm for TSP on a metric graph can be obtained using the Minimum



Spanning Tree (MST) [10]. The best constart approximation ratio for metric TSP is the %—approximation
that can be derived by the Christo des algorithm [9]. Recerily, a polynomial time approximation scheme
(PTAS) for Euclidean TSP has been proposedby Arora [2]. For any xed " > 0 and any n nodesin R?
the randomized version of the scheme can achieve a (1 + ")-approximation in O(n Iogo(% n) running time.
There are many approximation algorithms for variations of the TSP problem, e.g., TSP with neighborhoods
[11], neverthelesstheseproblemsare not closelyrelated to TPQ queries. For more approximation algorithms
for dierent versionsof TSP, we refer to [1] and the referencestherein. Finally, there are many practical
heuristics for TSP [35], e.g., genetic and greedy algorithms, that work well for some practical instances of
the problem, but no approximation bounds are known about them.

TPQ is alsocloselyrelated to the GeneralizedMinim um Spanning Tree (GMST) problem. The GMST is
a generalizedversion of the MST problem where the verticesin a graph G belongto m di erent categories.
A tree T is a GMST of G if T contains at least one vertex from ead category and T has the minimum
possible cost (total weight or total length). Even though the MST problem is in P, it is known that the
GMST isin NP. There are a few methods from the operational researti and economicscommunity that
proposeheuristics for solving this problem [26] without providing a detailed analysis on the approximation
bounds. The GMST problem is a special instance of an even harder problem, the Group Steiner Tree (GST)
problem [16, 17, 22]. For example, polylogarithmic approximation algorithms have been proposedrecerily
[14, 13]. Sincethe GMST problem is a special instance of the GST problem, such bounds apply to GMST
aswell.

3 Fast Appro ximation Algorithms

In this sectionwe examine se\eral approximation algorithms for answering the trip planning query. For eath
solution we provide the approximation ratios in terms of m and . For simplicity, considerthat we are given
a complete graph G°, cortaining one edgeper vertex pair vi;v; (1 i;j n) represening the cost of the

has visited k vertices, excluding S (where S = v;,). Trivially, it can be shown that a trip Tx constructed
on the induced graph G€, has exactly the samecost asin graph G, with the only di erence being that a
number of vertices visited on the path from a given vertex to another are hidden. Hiding irrelevant vertices
by using the induced graph G¢ guaranteesthat any trip T producedby a given algorithm will be represered
by exactly m signi cant vertices, which will simplify exposition substartially in what follows. In addition,
by removing from graph G°¢ all verticesthat do not belongto any of the m categoriesin R, we can reduce
the size of the graph and simplify the construction of the algorithms. Given a solution obtained using the
reduced graph and the complete shortest path information for graph G€, the original trip on graph G can
always be acquired. In the following discussion,T,” denotesan approximation trip for problem P, while T,
denotesthe optimal trip. When P is clear from context the superscript is dropped.

3.1 Appro ximation in Terms of m
In this sectionwe provide two greedy algorithms with tight approximation ratios with respectto m.
3.1.1 Nearest Neigh bor Algorithm

The most intuitiv e algorithm for solving TPQ is to form a trip by iterativ ely visiting the nearestneighbor of
the last vertex addedto the trip from all verticesin the categoriesthat have not beenvisited yet, starting
from S. Formally, givena partial trip Ty with k < m, Ty+1 is obtained by inserting the vertex v;,,, which is
the nearestneighbor of v;, from the set of verticesin R belongingto categoriesthat have not beencovered



yet. In the end, the nal trip is produced by connecting v;,, to E. We call this algorithm Ay, which is
shown in Algorithm 1.

Algorithm 1 Ayn (G%R;S;E)
1.v=S, I =fl:::;mg, Ta = fSg
: for k= 1to mdo
v = the nearestNN (v;R;) for all i 2 |
Ta fvg
I I fig
end for
:Ta fEg

NoaRrDN

Theorem 1. Ayn givesa (2™*1  1)-approximation (with respct to the optimal solution). In addition,
this approximation bound is tight.

Ri, where[ %, vy, = R. Let To = fS;wy,;:::; W, ; EQ denote the optimal trip, where[ 2, w;, = R. Let
fwy;:::1;wyng be a permutation of the verticesin T, (excluding S and E) s.t. (w;j) = R;, and function
p(tj) = i satisfying wy; = w; represerts this permutation. Sincev,,, is the nearestneighbor of v;, from

category Rx+1 by construction, c(vi, ;Vi,., )  C(Vi, ; Wk+1 ) giventhat (Wg+1 ) = Ry+1 . Clearly:
P P
o(Ta) = CoSiviy)+*  per  O(Ve Ve )+ OV, sE)  o(Siwa) + ey b o(Ve, s Wier ) + (Wi E)
By the triangle inequality:

C(Vt, ; W2) c(vt,;S) + c(S;wz)  c(wg; S) + c(S;w2) = ¢(S;wi) + ¢(S;wy)

C(Vt, ; W3) c(vt,; S) + c(S;w3z) = ¢(S;vt,) + C(S; W3)
Cc(S;vi,) + (Vi s Ve,) + ¢(S;w3)  c(S;vi,) + (Vi3 S) + ¢(S;vr,) + ¢(S;Wa)
c(S;w1) + c(S;wy) + c(S;wo) + ¢(S;ws) = 2¢(S;w1) + ¢(S;wp) + ¢(S;ws)

c(Vt, ;W) 2" 20(S;wy) + 2™ 30(S;wz) + i1l H 20(S;Wm 2) + C(S;Wm 1) + O(S; W)
= motom 1ig(Siwi) + o(S;Wm)
[P . P m 1 . P m m Kk . P m m  k+1 .
This infersthat c(S;w1)+ | 2" C(Vi, s Wi+t ) k=1 27 “c(S;wi), hencec(T,) k=1 2 c(S;wy) +
c(Wm;E). It alsoholds that c(S;wi)  c(S;wi,) + C(We,;We,) + 00+ (W, ;W ) Where p(tj) = i. By
applying this inequality to every c(S;w;) for i = f1;:::;mg, denote the frequency of appearanceof each
term with a function f. Clearly, f (c(S;wt,)) = m  f(c(we, ;W) o0 f(o(w, 3w, )). Thus:

P
o(Ta) oy 2m k(S w) + c(Wm; E)
21:1 2k(C(S’Wt1) + in;l . C(Wti ;Wti+1 ) + C(th 1E))

@1 1)o(To); (since rO+ ::i+ rm = L1070

This givesthe upper bound of the approximation ratio of Ayn for the TPQ problem. This bound is
tight, i.e., it is also the lower bound in the worst case. A scenariothat illustrates this is shown in Figure
2. Supposec(S;E) = a, and verticesw;y;:::;wy are all co-located to the right of E, at distance " a.

8i: (vi); (wi) = Rj). It canbe obsened that the closestpoint to S is v; with costa. The closestto v; is



Figure 2: Lower Bound Analysis of Ay n

Vo with cost ¢(vy;Vv2) = 2a, and soon. SoAnn Will always choosevj.1 asthe next vertex of the trip. So

Ta=1fS;v1;:ivm;Egand ¢(Ty) = 2 i”;l l2a+a= (2™*1  1)a, where the optimal trip in this casehas
costc(T,) = a+ 2". So Egag 2m+1 1. This completesthe proof. O

3.1.2 Minim um Distance Algorithm

This sectionintroducesa novel greedy algorithm, called Ay p, that achievesa much better approximation

vertex per categoryin R, such that the sum of costsc(S;v;) + c(v;; E) perv; is the minimum costamongall
vertices belonging to the respective category R; (i.e., this is the vertex from category R; with the minimum
traveling distance from S to E). After the set of vertices has beendiscovered, the algorithm createsa trip
from S to E by traversing these vertices in nearestneighbor order, i.e., by visiting the nearestneighbor of
the last vertex addedto the trip, starting with S. The algorithm is shown in Algorithm 2.

Algorithm 2 Anp (G%R; S;E)
1: U=

2: for i = 1to m do

3 U (v) = Ry : ¢(S;V) + c(v; E) is minimized
4: v=8S, T, fSg

5: while U 6 ; do
6:
7
8
9

v= NN{(v;U)
Ta fvg
: Remove v from U
. end while
10: Ta fEg

It can be shown that the trip obtained by Ay p is an m-approximate solution if m is odd, and an
m + l-approximate solution if m is even.

Theorem 2. If m is odd then Ay p givesan m-approximate solution. In addition this approximation bound
is tight.

Proof. To prove this theorem, we prove a stronger claim. After selecting one vertex from ead category
as already discussed,a trip formed by any permutation of those vertices will satisfy ¢(T,)  mc(T,). Let

Q
L)
m—|
N—r

I

C(S;Vi,) + (Vi Vi, ) + it + (i, s E)  c(Siviy) + (C(Vi, s E) + C(E;vi, )+

(c(Ve,;S) + C(Sivey)) + i+ (v, o E) + C(Eswe, ) + (€W, 15S) + S(Siwe, ) + (W, 5 E)
(C(Siviy) + ¢(vi, E)) + (C(E;we,) + C(W,; S)) + i+ ((S;w,, ,) + S, , E)+

(C(EiVtn 1)+ SVey 13S) + ((Sivey ) + O(Vi, s E)) = (L (S(Sive, ) + (v, s E))

P
Given the optimal solution T, = fS;wq;:::;wn;Egand T, ?:1 (c(S;w, ) + c(v, ; E)), the sum can
be rewritten in arbitrary order by reshuing subscriptst; with an appropriate mapping function p(t;) = i
without e ect. By reshuing the subscriptssud that T, 21:1 (c(S;vk) + c(vk;E)) and (vi); (W) = R;



Figure 3: Lower Bound Analysis of Ay p

(i.e., by reorganizing the sequenceof verticesin the given permutation to correspond to the order by which
every category is visited in the optimal solution), we get:

xXn xn
Ta (e(S;vk) + c(vk; E)) (c(S;wy) + c(wg; E))  mc(To)
k=1 k=1

The rst step holds by construction and the last step holds due to the triangle inequality c(S;w;) +
c(wi;E) ¢(T,) giventhat the optimal trip passeshrough w;.
To shaw that this bound is tight, we prove by example. Consider the worst casescenarioof Figure 3.

location in spaceand distancea+ " from S. The optimal solution has cost 2(a+ "), while Ay p has cost

2ma. Thus, ‘;gz; m. This completesthe proof. O

Theorem 3. If m is eventhen Ay p givesan m + l-approximate solution. In addition this approximation
bound is tight.

Proof. A similar proof holds. O

3.2 Appro ximation in Terms of

In this section we consideran Integer Linear Programming approach for the TPQ problem which achieves
a linear approximation bound w.rt. , i.e., the maximum category cardinality. Consider an alternative
formulation of the TPQ problem with the constraint that S = E and denote this problem as Loop Trip
Planning Query(LTPQ) problem. Next we show how to obtain a % -approximation for LTPQ using Integer
Linear Programming.

Let A = (g;) bethe m (n+ 1)incidencematrix of G, whererows correspond to the m categories,and
columns represen the n + 1 vertices (including vg = PS = E). A's elemerts are arranged such that a;; = 1
if (vi) = Rj, &; = 0 otherwise. Clearly, = max; &, i.e., ead category cortains at most distinct
vertices. Let indicator variable y(v) = 1if vertex v is in a giventrip and O otherwise. Similarly, let x(e) = 1
if the edgee is in a giventrip and 0 otherwise. For any SV, let (S) be the edgescortained in the cut
(S;V nS). The integer programming formulation for the LTPQ problem is the following:

Problem | Pt po = minimize . c(€)x(e), subject to:

1. P e2 (fvg) x(e) = 2y(v), forallv2V,

2. P 2 (S) x(e) 2y(v),forallS V;vy2ZS,andallv2s,

P
3. L aiy(v) 1, forallj=1;::m,



4' y(VO) = 11
5. y(vi) 2 f0;1g, x(e)) 2 f0; 1g

Condition 1 guaranteesthat for every vertex in the trip there are exactly two edgesincident on it.
Condition 2 preverts subtrips, that is the trip cannot consistof two disjoint subtrips. Condition 3 guarantees
that the chosenvertices cover all categoriesin R. Condition 4 guaranteesthat vg is in the trip. In order to
simplify the problem we canrelax the above Integer Programming into LP 1 pg by relaxing Conditions 5 to:
0 vy(v);x(e) 1. Any e cient algorithm for solving Linear Programming could now be applied to solve
LP.r pg [36]. In order to get a feasible solution for | Pt pg, we apply the randomized rounding scheme
stated below:

Randomized Rounding:  For solutions obtained by LP 1 po, sety(vi) = 1if y(v;) 1. If the trip visits
vertices from the samecategory more than once,randomly selectoneto keepin the trip and sety(vj) = 0
for the rest.

Theorem 4. LP. 7 pq together with the randomized rounding schemealove nds a % -approximation for
| Pt po, i-e., the integer programming approach is ableto nd a % -approximation for the LTPQ problem.

The proof of theorem 4 is quite involved and thus preserted asan Appendix. We denoteany algorithm for
LTPQ asArt pg. A TPQ problem can be corverted into an LTPQ problem by creating a special category
Cm+1 = E. The solution from this converted LTPQ problem is guaranteed to passthrough E. Using the
result returned by At pg, a trip with constart distortion could be obtained for TPQ. This step is shovn
as part of the proof for the next lemma.

Lemma 1. A -approximation algorithm for LTPQ implies a 3 -approximation algorithm for TPQ.
Proof. Suppose AT pg returns a cycle TaLlT PQ - fS;vig;iinvi, G Esvigiinvi, 1 Sg. We can construct

triangle inequality, ¢(S;E)  ¢(S;vi,;:::;vi, .;E) andc(S;E)  c(E;vi.;:::;Vi,;S), combining thesetwo
weget o(S;E)  ic(T,; P?). Now considerthe costof trip T, "<, which is

oTSPQ) = oSiviyiiiniVie ViV, )+ o(vi, s E)
o(Ta’ "9 + 3Ty °©)

Sowe get: 3 3
C(TaT P Q) é C(TaLlT P Q) é C(TOLT P Q)

Now, supposethe optimal trip for this TPQ problemis T,7PQ = fS;v;,;:::;v;,, ; Eg. Then, afeasiblecyclefor
LTPQ is Toy P9 = fS;vj,;::1;v;,, ; E; Sg. By the triangle inequality, o(TLTPQ) (T3 )  2¢(T,PQ).
By substituting ¢(TSTPQ)  2¢(T,TPQ) into the rst inequality above we get T,/P? 3 (T, PQ). This
completesthe proof. O

Therefore, by combining theorem 4 and lemma 1, we get

Lemma 2. Thereis a polynomial time algorithm basel on Integer Linear Programming for the TPQ problem
with a § -approximation.



3.3 Appro ximation in Terms of m and

In Section2 we discussedhe GeneralizedMinim um Spanning Tree (GMST) problem which is closelyrelated
to the TPQ problem. Recall that the TSP problem is closelyrelated to the Minim um Spanning Tree (MST)
problem, where a 2-approximation algorithm can be obtained for TSP basedon MST. In similar fashion, it
is expected that one can obtain an approximate algorithm for TPQ problem, basedon an approximation
algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. Supposewe are given an approximation
algorithm for GMST problem, denoted Agym st. We can construct an approximation algorithm for TPQ
problem as shown in Algorithm 3.

Algorithm 3 Appr oximation Algorithm  for TPQ Based on GMST

1: Compute a -approximation TreeSM ST for G rooted at S using Agwm s .
2: Let LT bethe list of vertices visited in a pre-order tree walk of TreeSM ST
3: Move E to the end of LT .

4: Return T, P9 asthe ordered list of verticesin LT .

Lemma 3. If weusea -approximation algorithm for GMST problem, then Algorithm 3 for TPQ problem
is a 2 -approximation algorithm.

Proof. The weight of the generalizedminimum spanning tree is a lower bound on the cost of an optimal
trip for TPQ: o(T,PQ)  o(TreeSM ST). The full walk W of TreeSM ST from S to E traversesevery edge
of TreeS™ ST at most twice. Clearly, (W) 2 c(TreeSMST) 2 ¢(Treef™ 7). Theseinequalities imply
that c(W) 2 c(TreeSMST) 2 (T, PQ). Notice that T,” P2 could be obtained by deleting vertices from
the full walk W (the proof of this follows a similar proof for the 2-approximation algorithm for TSP based
on MST [10]). This infers that ¢(T,/P?) ¢(W). By combining theseresults ¢(T,/PQ) 2 ¢(T,/PQ). O

We can get a solution for TPQ by using Lemma 3 and any known approximation algorithm for GST,
as GMST is a special instance of GST. For example, the O(log® logm) algorithm proposedin [14], which
yields a solution to TPQ with the samecomplexity.

4 Algorithm Implemen tations in Spatial Databases

In this sectionwe discussimplementation issuesof the proposedTPQ algorithms from a practical perspective,
given disk residert datasets and appropriate index structures. We shov how the index structures can be
utilized to our benet, for evaluating TPQs e cien tly. We opt at providing designdetails only for the greedy
algorithms, Ay n and Ay p sincethey are simpler to implement, while the Integer Linear Programming and
GMST approachesare not very practical for external memory applications.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean spacewhere a spatial dataset is indexed using an R-tree [20]. We
show how to adapt Ay and Ay p in this scenario. For simplicity, we analyzethe casewherea single R-tree
storesspatial data from all categories.

Implemen tation of Ayn. The implementation of Ayn using an R-tree is straightforward. Suppose

categoriesvisited by Tx. By performing a nearestneighbor query with origin pg, using any well known NN
algorithm, until a new point px+; is found, suc that (px+1) 2 C(Tk), we iterativ ely extend the trip one
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Figure 4: Intuition of vicinity area Figure 5: Shortest distance calculation.

vertex at atime. After all categoriesin R havebeencaovered,we connectthe last vertex to E and the complete
trip is returned. The main advantage of Ay n isits e ciency . Nearestneighbor query in R-tree hasbeenwell
studied. One could expect very fast query performancefor Ay . However, the main disadvantage of Ay n

is the problem of \searching without directions". Considerthe exampleshown in Figure 4(A). Ay n will nd

thetrip T1=fS! Al1! B1l! C1l! Eginsteadof the optimal trip T2=fS! C2! A2! B2! Eg.
In Ann, the seard in every step greedily expandsthe point that is closestto the last point in the partial trip

without consideringthe end destination, i.e., without consideringthe direction. The more intuitiv e approac
is to limit the seard within avicinity areade ned by S and E asthe ellipse shown in Figure 4(B). The next
algorithm addressesghis problem.

Implemen tation of Ayp. Next, we shov how to implement Ay p using an R-tree. The main idea is
to locate the m points, one from eac category in R, that minimize the Euclidean distance D(S;E;p) =
c(S;p) + c(p;E) from S to E through p e cien tly using the structure. We call this the minimum distance
qguery. This query meets our intuition that the trip planning query should be limited within the vicinity
area of the line segmen de ned by S;E (asin the example shown in Figure 4(B)). The minimum distance
guery can be answered by modifying any well known NN seard algorithm for R-trees[31], where instead of
using the traditional M inD ist measurefor sorting candidate distances,we useD. Given S and E we run
the modi ed NN seard oncefor locating all m points incremertally, and report the nal trip.

All NN algorithms basedon R-trees compute the nearestneighborsincremertally usingthe tree structure
to guide the seard. An interesting problem that arisesin this caseis how to geometrically compute the
minimum possibledistance D(S; E; p) betweenpoints S;E and any point p inside a given MBR M (similar
to the M inD ist heuristic of the traditional seard). This problem canbe reducedto that of nding the point
p on line segmen AB that minimizes D(S;E;p), which canthen be usedto nd the minimum distance from
M, by applying it on the MBR boundarieslying closerto line segmen SE. There are three possiblecases
as shown in Figure 5. Point p can be computed by projecting the mirror image E° of E, given AB. It can
be proved that:

Lemma 4. Given line sgmentsAB and SE, the point p that minimizes D(S;E;p) is:
CaseA: If EECintersects AB, then p is the intersection of AB and SE°

CaseB: If EE®and SE do not intersect AB, then p is either A or B.

CaseC: If SE intersects AB, then p is the intersection of SE and AB .

Using the lemma, we can easily compute the minimum distancesD(S;E ;M) for appropriately sorting
the R-tree MBRs during the NN seard. The details of the minimum distance query algorithm is shown
in Algorithm 4. For simplicity, here we show the algorithm that searhesfor a point from one particular
category only, which can easily be extendedfor multiple categories.In line 8 of the algorithm, if ¢ is a node
then D(S;E;c) is calculated by applying Lemma 4 with line segmens from the borders of the MBR of c; if
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Figure 6: A simple road network.

c is a point then D(S;E;c) is the length jScj + jcEj. Straightforwardly, the algorithm can also be modi ed
for returning the top k points.

Algorithm 4 Algorithm  Minimum Dist ance Query For R-trees
Input:  Points S, E, Category R, R-tree rtree

1: Priorit yQueue QR = ;, QS = f(rtree:root;0)g; B = 1

2: while QS not empty do

3: n = QS:top;

4; if nidist B then

5: return QR:top

6: for all children c of n do

7 dist = D(S;E;c)

8: if nis an index node then

9: QS (c;dist)

10: else if (M) = R; then . (cis a point)
11 QR  (c;dist)

12: if dist B then B = dist

4.2 Applications in Road Networks

An interesting application of TPQs is on road network databases. Given a graph N represerting a road
network and a separateset P represeriing points of interest (gas stations, hotels, restaurarnts, etc.) located
at xed coordinates on the edgesof the graph, we would like to develop appropriate index structures in order
to answer e cien tly trip planning queriesfor visiting points of interest in P using the underlying network
N . Figure 6 shavs an exampleroad network, along with various points of interest belongingto four di erent
categories.

For our purposeswe represent the road network using techniques from [33, 45, 29]. In summary, the
adjacencylist of N and set P are stored as two separate at les indexed by B* -trees. For that purpose,
the location of any point p 2 P is represeried as an o set from the road network node with the smallest
identi er that is incident on the edgecontaining p. For example, point p4 is 1.1 units away from node ns.

Implemen tation of Ayn. Nearestneighbor querieson road networks have been studied in [29], where
a simple extension of the well known Dijkstra algorithm [10] for the single-sourceshortest-path problem on
weighted graphsis utilized to locate the nearestpoint of interest to a given query point. As with the R-tree
case,straightforwardly, we can utilize the algorithm of [29] to incremenrtally locate the nearestneighbor of
the last stop added to the trip, that belongsto a category that has not beenvisited yet. The algorithm
starts from point S and when at least one stop from ead category has beenaddedto the trip, the shortest
path from the last discovered stop to E is computed.

Implemen tation of Ayp. Similarly to the R-tree approac, the ideaisto rst locate the m points from
categoriesin R that minimize the network distancec(S;p;; E) using the underlying graph N, and then create
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atrip that traversesall p; in a nearestneighbor order, from S to E. It is easyto show with a counter example
that simply nding a point p that rst minimizes cost ¢(S;p) and then traversesthe shortest path from p
to E, doesnot necessarilyminimize cost ¢c(S;p;E). Thus, Dijkstra's algorithm cannot be directly applied
to solve this problem. Alternativ ely, we proposean algorithm for identifying such points of interest. The
procedureis shawvn in Algorithm 5.

The algorithm locatesa point of interestp: (p) 2 R; (given R;) sud that the distance ¢(S;p;E) is
minimized. The seard beginsfrom S and incrementally expandsall possiblepaths from S to E through all
points p. Whenewer such a path is computed and all other partial trips have cost smaller than the tentativ e
best cost, the seart stops. The key idea of the algorithm is to separate partial trips into two categories:
one that contains only paths that have not discovered a point of interest yet, and one that cortains paths
that have. Paths in the rst category competeto nd the shortest possibleroute from S to any p. Paths in
the secondcategory competeto nd the shortest path from their respective pto E. The overall best path is
the onethat minimizes the sum of both costs.

Algorithm 5 Algorithm  Minimum Distance Query For Road Netw orks
Input:  Graph N, Points of interest P, Points S, E, Category R;

1. Foreahni 2N :niixcg=hniscp=1

2: Priorit yQueue PQ = fSg,B=1,Tg = ;

3: while PQ not empty do

4: T = PQ:top

5: if T:c B then return Tg

6: for eath node n adjacert to T:last do

7: To=T7 . (create a copy)
8: if T°doesnot contain a p then

9: if 9p:p2 P; (p) = Ri on edge(T%last; n) then
10: T%+ = ¢(T%last; p)

11 T° p,PQ TO

12: else

13: T%+ = ¢(TC%last;n), T® n
14: if nic. p > TC%c then

15: ncp=T% PQ T°
16: else

17 if edge(T%n) contains E then
18: T%+ = ¢(T%last;E), T® E
19: Update B and Tg accordingly
20: else

21: T%+ = ¢(T%ast;n), T® n
22: if n:icp > T%c then

23; nc,=T%, PQ TP

24: endif

25: endfor

26:_endwhile

The algorithm proceedsgreedily by expanding at every step the trip with the smallest current cost.
Furthermore, in order to be able to prune trips that are not promising, basedon already discovered trips,
the algorithm maintains two partial bestcostsper noden 2 N. Cost n:c, (n:c. ) represerts the partial cost
of the best trip that passesthrough this node and that has (has not) discovered an interesting point yet.
After all k points(one from ead category R; 2 R) have beendiscoveredby iterativ ely calling this algorithm,
an approximate trip for TPQ can be produced. It is also possibleto designan incremenrtal algorithm that
discoversall points from categoriesin R concurrertly, but this will appearin the full version of the paper.

Next we use an example to illustrate how our algorithm works. Consider the caseshown in Figure 6.
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step | priority queue updates

1 | Spi(2), Sny(2) NaCp=2

2 | Spin1(2), Sn2ps3(2:8), Spina(4), Snz2pi(5), Snana(7) | N1iCy = 2, N2i¢p = 4, N4C p = 7
3 Snypsn2(3:6), Spining(6), Snopsnsz(8), Snanap2(10:2) | noicy = 3:6, N3icy = 8, Naiy = 6,
B=7Tg = Splan

4 | Spin1n4(6), Snz2p3ns(8), Snangap2(10:2) B = 6:6, Ts = SnypanzE
5 | Snypans(8), Snanaps(10:2) B = 6.6, Ts = Snypsn2E
6 | Algorithm stopsand returns Tg B = 6:6, Tg = SnypsnzE

Table 1: Applying Algorithm 5 to examplein Figure 6

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
F, C F,
candidate p search region SR «—— 2 ——» J
[ J

Figure 7: The seard region of a minimum distance query

Using the simple Dijkstra basedapproad, i.e., nding a point p that rst minimizes cost ¢(S;p) and then
traversesthe shortest path from pto E, will return thetrip S! pi! ny! E with distanceof 7:0. However,
a better answeris S! ny! pz! np! E , which is achieved by our algorithm, with distance of 6.6. In
Table 1 the priority queuethat contains the seard paths along with the update to the node partial best
costsis listed in a step by step fashion. The pruning steps of our algorithm make it very e cient. A lot
of unnecessaryseard has beenpruned out during the expansions. For example, in step 3 the partial path
Snypy is pruned out as ¢(Snopini) > ni:cy and c(snapinz) > nyic. Our algorithm can also be used to
answer top k queries. Simply maintaining a priority queuefor Tg and update B corresponding to the kth
complete path cost. For exampleif k = 3, then in step 4 Tg will be updated to Sn,psn2E (6:6); Sp1n2E(7)
and in step 5 path Spinin4E(8) will be added and the seard will stop asby now the top partial path has
cost equal to the third best complete path.

5 Extensions

5.1 1/O Analysis for the Minim um Distance Query

In this sectionwe study the I/O boundsfor the minimum distancequery in Euclidean space,i.e., the expected
number of I/0Os whenwetry to nd the point p that minimizes D(S;E;p) from a point setindexedwith an
R-tree. By carefully examining Algorithm 4 and Lemma 4, we can claim the following:

Claim 1. The lower bound of I/Os for minimum distance queriesis the number of MBRs that intersect with
line sgment SE.

For the averagecase the classicalcostmodelsfor nearestneighbor queriescanbe used[41, 7, 6, 30, 40]. On
averagethe 1/0 for any type of querieson R-treesis given by the expectednode access:N A = ihzol NiPna,
whereh is the height of the tree, n; is the number of nodesin level i and Py 4, is the probability that a node
at level i is accessed.The only peculiarity of minimum distance queriesis that their seard region SR, i.e.,

the area of the data spacethat may contain candidate results, forms an ellipse with focii the points S;E.
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It follows immediately that, on average,in order to answer a minimum distance query we have to visit all
MBRs that intersect with its respective SR. Thus, if we quantify the size of SR we can estimate Py 4, .
Consider the example in Figure 7, and suppose p; is currently the point that minimizes D(S;E;p1).
Then the ellipsede ned by S;E; p; will be the regionthat cortains possiblebetter candidates,e.g., p in this
example. This is true due to the property of the ellipsethat r; + r, = 2a, i.e., any point p°on the border
of the ellipse satis es D(S;E;p% = 2a. Therefore, to estimate the I/O cost of the query all we needto do
is estimate quartity a. Assuming uniformity and a unit squareuniverse,we have Areasg = k=jPj. We also
know that Areasg = Areaeipse = 2 = 4ac P =2 = 4dac (a2 ?). Hence,
r - A i~
a=2c+ 5¢2 (%)2 1)
With S, E, c= jSEj=2 and Equation 1 we could determine the seard region for a k minimum distance
query. With the seard region being identi ed, one could derive the probability of any node of the R-tree
being accessed.Then, the standard cost model analysisin [7, 6, 30, 40] can be straightforwardly be applied,
hencethe details are omitted. Generalizationsfor non-uniform distributions can also be addressedsimilarly
to the analysis preseried in [40], where few modi cations are required given the ellipsoidal shape of the
seard regions. The I/O estimation for queries on road networks is much harder to analyze and heavily
dependson the particular data structures used,therefore it is left as future work.

5.2 Hybrid Approac h

We also consider a hybrid approadc to the trip planning query for disk baseddatasets (in both Euclidean
spaceand road networks). Instead of evaluating the queriesusing the proposedalgorithms, the basic idea
isto rst selecta sucient number of good candidatesfrom disk, and then processthose in main memory.
We apply the minimum distance query to locate the top k points from ead respective category and then,
assumingthat the query visits a total of m categories,the k m points are processedn main memory using
any of the strategiesdiscussedin Section 3. In addition, an exhaustive seard is also possible. In this case,
there are m* number of instancesto be chedked. If mK is large, a subsetcan be randomly selectedfor further
processing,or the value of k is reduced. Clearly, the hybrid approach will nd a solution at least as good as
algorithm Ay p. In particular, sincethe larger the value of k the closerthe solution will be to the optimal
answer, with a hybrid approach the user can tune the accuracy of the results, according to the cost sheis
willing to pay.

6 Exp erimen tal Evaluation

This sectionpreseris a comprehensie performanceevaluation of the proposedtechniquesfor TPQ in spatial
databases.We usedboth synthetic datasetsgeneratedon real road networks and real datasetsfrom the state
of California. All experiments were run on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Exp erimen tal Setup. To generate synthetic datasets we obtained two real road networks, the city of
Oldenburg(OL) with 6105nodesand 7035edgesand San Joaquin county(TG) with 18263nodesand 23874
edges,from [8]. For eact dataset, we generateduniformly at random a number of points of interest on the
edgesof the network. Datasetswith varying number of categories,as well as varying densities of points per
categoryweregenerated. The total number of categoriesis in the rangem 2 [5; 30], while the category density
is in the rangeof 2 [0:0IN;0:25N ], where N is the total number of edgesin the network. For Euclidean
datasets, points of interest are generatedusing the road networks, but the distancesare computed as direct
Euclidean distancesbetweenpoints, without the network constraints. Our synthetic datasethasthe exibilit y
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Figure 8: Real dataset from California

of controlling di erent densities and number of categories,however it is basedon uniform distribution on
road network (not necessarilyuniform in the Euclidean space). To study the generaldistribution of di erent
categories,we also obtain a real dataset for our experimernts. First we get a collection of points of interests
that fall into di erent categoriesfor the state of California from [37] asshown in Figure 8(a), then we obtain
the road network for the samestate from [27] asshown in Figure 8(b). Both of them represen the locations
in a longitude/latitude space,which makesthe merging step straightforward. The California dataset has
63 di erent categories,including airports, hospitals, bars, etc., and altogether more than 100; 000 points.
Dierent categoriesexhibit very di erent densities and distributions. The road network in California has
21; 048 nodesand 22; 830 edges. For all experiments, we generate100 querieswith randomly chosenS and
E.

Road Network Datasets. In this part we study the performanceof the two algorithms for road networks.
First, we study the e ects of m and . Due to lack of spacewe presert the results for the OL baseddatasets
only. The results for the TG datasetswere similar. Figure 9(a) plots the results for the averagetrip length
asafunction of m, for = 0:01IN. Figure 9(b) plots the averagetrip length asa function of , for m = 30. In
both casesclearly Ay p outperforms Ay . In general,Ayp givesatrip that is 20%-40%better (in terms
of trip length) than the one obtained from Ay . It is interesting to note that with the increaseof m and
the decreaseof the performancegap betweenthe two algorithms increases.Ay n is greatly a ected by the
relative locations of points asit greedily follows the nearestpoint from the remaining categoriesirrespective
of its direction with respect to the destination E. With the increaseof m, the probability that Ayn wanders
o the correct direction increases.With the decreaseof , the probability that the next nearestneighbor is
closeenough decreaseswhich in turn increasesthe chancethat the algorithm will move far away from E.
However, for both casesA\ p is not a ected.

We also study the query cost of the two algorithms measuredby the averagerunning time of one query.
Figure 10(a) plots the results as a function of density, and m = 15. In general, Ay N has smaller runtime.
The reasonis that the Ay p query in the road network is much more complexand needsto visit an increased
number of nodes multiple times.

Euclidean Datasets. Dueto lack of spacewe omit the plots for Euclidean datasets. In general,the results
and conclusionswere the sameas for the road network datasets. A small di erence is that the performance
of the two algorithms is measuredwith respect to the total number of R-tree I/Os. In this case,Ayn was
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more e cien t than Ay p, especially for higher densitiesas shown in Figure 10(b).

General Datasets and Query Workloads. In the previous experiments datasetshad a xed density
for all categories. Furthermore, querieshad to visit all categories. Here, we examine a more general setting
where the density for di erent categoriesis not xed and queriesneedto visit a subsetR of all categories.
Figure 9(c) summarizesthe results. We setm = 20 and uniformly distributed in [0:0IN;0:20N]. We
experiment with subsetsof varying cardinalities per query and measurethe averagetrip length returned by
both algorithms. Ay p outperforms Ayn by 15%in the worst case. With the increaseof the cardinality of
R, the performancegain on Ay p increases.

Real Datasets. Sofar we have tested our algorithm on synthetic datasets To comparethe performance
of the algorithms in a real setting, we apply Ann and Ay p on the real dataset from California. There are
63 di erent categoriesin this dataset, hencewe show the query workload that requires visits to a subsetof
categories(up to 30 randomly selectedcategories). Figure 11(a) comparesthe averagetrip length obtained
by Ann and Ay p in the road network case. In this case,we simply uselongitude and latitude asthe point
coordinates and calculate the distance basedon that. So the absolute value for the distance is small. As
we have noticed, Ay p still outperforms Ay in terms of trip length, however, with the price of a higher
guery costasindicated in Figure 11(b). Notice that the running time in this experiment is much higher than
the onein Figure 10(a) as we are dealing with a much larger network as well as more data points. Similar
results have beenobsened for the samedatasetin Euclidean space(where the costis measuredin I/Os) and
they are omitted. It is interesting to note that the trip length is increasingw.r.t. the number of categories
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Figure 11: Experiments with real dataset

in a non-linear fashion (e.g., from 25 categoriesto 30 categories),as comparedto the sameexperiment on
the synthetic dataset shown in Figure 9(a). This could be explained by the non-uniformity property and
skewnessof the real dataset. For example, there are more than 900 airports and only about 50 harbors. So
when a query category for harbors is included, one expect to seea steepincreasein the trip length.

Study of the Hybrid Approac h. We also investigate the e ectiv enessof the hybrid approach as sug-
gestedin Section5.2. Our experimernts on synthetic datasetsshow that the hybrid approad improvesresults
over Ay p by a small margin. This is expected due to the uniformity of the underlying datasets. With the
real dataset we seea noticeable improvemert with the hybrid approac over Ayp (we setm = 5). This
is mainly due to the skewed distribution in dierent categoriesin the real dataset. The hybrid approac
incurs additional computational costin main memory (i.e., cpu time) but identi es better trips. We omit
the running time of hybrid approach from Figure 11(b) asit exhibits exponertial increase@(m¥)) with the
number of categories. However, when the number of categoriesis small, the running time of hybrid approac
is comparableto Ayn and Ay p, €.9.,whenm = 5 its running time is about 3:8 secondsfor one query, on
average.

7 Conclusions and Future Work

We introduced a novel query for spatial databases,namely the Trip Planning Query. First, we argued
that this problem is NP-Hard, and then we deweloped four polynomial time approximation algorithms, with
e cien t running time and good worst caseguarantees. We also shaved how to apply these algorithms in
practical scenarios,both for Euclidean spacesand Road Networks. Finally, we preseried a comprehensie
experimental ewaluation. For future work we plan to extend our algorithms to support trips with user
de ned constraints. Examplesinclude visiting a certain category during a speci ed time period [3], visiting
categoriesin a given order, and more.
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8 App endix

8.1 Appro ximation Ratio of IP.rpqg

In order to provethe approximation ratio, we needsomeauxiliary results. Considerthe Integer Programming
formulation of the classical TSP.
Problem 1P;: Z; =minimize = _,¢ CeXe, Subject to

P
1 o @Xe=2foralli2V,

P
2. o (s)Xe 2/forallsS V;S6;,
3. Xe2f0;1g, forall e2 E

Let the LP, be the relaxation of | P,, which simply replacesthe third constraint by the following con-
straint: X 2 [0; 1] for all e 2 E. Let ZJ denotethe value of the optimal solution of LP,, and 8S  V let L(S)
be the length of the optimal TSP tour for S and L ¢ (S) bethe length of the tour obtained by the Christo des
algorithm [9]. Then obviously Z; Z, = L(V) L¢(V). And we know that L (V)  1:5L(V) = 1:5Z,.
Furthermore, Shmoys and Williamson in [34] proved:

Theorem 5. L¢(V) 1527
Now, let Vo, V, de ne r; =P2 if i 2 V, and r; = 0 otherwise. Consider the following two LP Problems:

Problem LP3: Z3 =minimize . CeXe, Subject to
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P
1 o @Xe=ri foralli2Vv,

2. P e2 (s) Xe 2,forallS V;S\ V,6; 6 \LnS,
3. Xe 2 [0;1], forall e2 E
Problem LPg4: Z4 =minimize P ook CeXe, Subject to
1. Pez (s) Xe 2, forallS V;S\ V,6; 6 V,nS,
2.0 Xe,foralle2E
Let ZZ be the optimal solution of LP3 and Z; be the optimal solution of LP4. It is shavn in [18] that

Theorem 6. Z3=2Z7

Clearly LP3 is more constrained than LP,, soZ ZJ. By theorems5 and 6, we can easily get the
following inequalities:
L(V2) LS(Vo) 1:527= 1527 2)

Basedon theseauxiliary results, now we can prove the approximation bound for | Pip 1q. Let (y?;x?;Z7) =
(Y s (X2)e2e ; Z7) be the optimal solution to problem LP 1 po. The randomized rounding processwill

1
get = 1ify? - and i = O otherwise. Meanwhile, we de ne k. = x . The trip obtained from the

solution after randomizedrounding passeghrough all the verticesin the setT; whereT; = fv; 2 Vj i = 1g.

Lemma 5. T; contains at least one vertex for each category.

Proof. 8k 2 [1;m], let Iy = fv; 2 V j a = 1g, we have jlj . We also have, by the formulation of
LPitPo:
%l ? X ?
1 aiyi = Yi
i=1 vi2lg

1
So, there must exist at leastoneindex j suchthat v; 2 Iy andy! - Thus,3 = L;v; 2 Trandy; 2 Ix. O
If wesetV, = Ty;ri = 2 in LP3 and LPy4, then by equation 2 we have
L(Ty) LS(Ty) 15z%= 1527 (3)

Notice that (ke)eoe is feasibleto LP4. Condition 2 of LP4 is easyto ched. Condition 1 is satis ed, as
by the formulation of LP 1 pg and our randomized rounding process:

X X R R 1
ke = Xé 2y; 2-=2
e2 (S) e2 (S)
Therefore, we have,
C ? P P 2 ?
AP Pt PQ = L (Tl) 1:524 1.5 e2E Cebe =15 e CeXe = 157 1 1.5Z,=150PT.t PQ
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