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Abstract

In this paper we discuss a new type of query in Spatial Databases, called the Trip Planning Query

(TPQ). Given a set of points of interest P in space, where each point belongs to a speci�c category,

a starting point S and a destination E , TPQ retrieves the best trip that starts at S, passesthrough

at least one point from each category, and ends at E . For example, a driv er traveling from Boston to

Providence might want to stop to a gas station, a bank and a post o�ce on his way, and the goal is

to provide him with the best possible route (in terms of distance, tra�c, road conditions, etc.). The

di�cult y of this query lies in the existence of multiple choicesper category. In this paper, we study fast

approximation algorithms for TPQ in a metric space. We provide a number of approximation algorithms

with approximation ratios that depend on either the number of categories,the maximum number of points

per category or both. Therefore, for di�eren t instancesof the problem, we can choosethe algorithm with

the best approximation ratio, since they all run in polynomial time. Furthermore, we use some of the

proposed algorithms to derive e�cien t heuristics for large datasets stored in external memory. Finally ,

we give an experimental evaluation of the proposedalgorithms using both synthetic and real datasets.

1 In tro duction

Spatial databaseshas been an active area of research in the last two decadesand many important results

in data modeling, spatial indexing, and query processingtechniques have beenreported [31, 19, 42, 39, 44,

28, 38, 4, 20, 29]. Despite thesee�orts, the queriesthat have beenconsideredso far concentrate on simple

range and nearest neighbor queriesand their variants. However, with the increasing interest in intelligent

transportation and modern spatial databasesystems,more complex and advanced query types need to be

supported.

In this paper we discussa novel query in spatial databases,the Trip Planning Query (TPQ). Assume

that a databasestoresthe locations of spatial objects that belong to oneor more categoriesfrom a �xed set

of categoriesC. The user speci�es two points in space,a starting point S and a destination point E , and a

subsetof categoriesR, (R � C), and the goal is to �nd the best trip (route) that starts at S, passesthrough

exactly one point from each category in R and ends at E . An example of a TPQ is the following: A user

plans to travel from Boston to Providence and wants to stop at a supermarket, a bank, and a post o�ce.

Given this query, a databasethat stores the locations of objects from the categoriesabove (as well as other

categories)should compute e�cien tly a feasible trip that minimizes the total traveling distance. Another

possibility is to provide a trip that minimizes the total traveling time.

E�cien t TPQ evaluation could becomean important new feature of advancednavigation systemsand can

proveuseful for other geographicapplications ashasbeenadvocated in previouswork [12]. For instance,state

of the art mapping serviceslike MapQuest, Google Maps, and Microsoft Streets & Trips, currently support

queries that specify a starting point and only one destination, or a number of user speci�ed destinations.
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Figure 1: A route from Boston Univ ersity (1) to Boston downtown (5) that passesby a gasstation (2), an ATM (3),
and a Greek restaurant (4) that have beenexplicitly speci�ed by the user in that order. Existing applications do not
support route optimization, nor do they give suggestionsof more suitable routes, lik e the one presented to the right.

The functionalit y and usefulnessof such systemscan be greatly improved by supporting more advanced

query types, like TPQ. An example from Streets & Trips is shown in Figure 1, where the user has explicitly

chosena route that includes an ATM, a gasstation and a Greek restaurant. Clearly, the system could not

only optimize this route by re-arranging the order in which these stops should be made, but it could also

suggestalternativ es,basedon other options available (e.g., from a large number of ATMs that are shown on

the map), that the user might not be aware of.

TPQ can be consideredas a generalization of the Traveling Salesmanproblem (TSP) [1, 2, 10] which

is N P-hard. The reduction of TSP to TPQ is straightforward. By assuming that every point belongs

to its own distinct category, any instance of TSP can be reduced to an instance of TPQ. TPQ is also

closely related to the group minimum spanning/steiner tree problems [26, 22, 16, 17], as we discusslater.

From the current spatial databasequeries,TPQ is mostly related to time parameterized and continuous NN

queries [5, 43, 38, 39], where we assumethat the query point is moving with a constant velocity and the

goal is to incrementally report the nearestneighbors over time as the query movesfrom an initial to a �nal

location. However, none of the methods developed to answer the above queriescan be used to �nd a good

solution for TPQ.

We would like to point out that TPQ hasalso applications beyond transportation systems. Consider the

following problem: Given a computer network and a set of jobs where each job can be executedonly in a

subset of the nodes in the network (i.e., each job de�nes a category and a node can belong to one or more

categories),we would like to �nd a shortest path that will visit at least one node from each category, given

a subsetof the jobs, starting and �nishing at speci�ed nodes.

Con tributions. This paper proposesa novel type of query in spatial databasesand studies methods for

answering this query e�cien tly . Approximation algorithms that achieve various approximation ratios are

presented, basedon two important parameters: The total number of categoriesm and the maximum category

cardinalit y � . In particular:

� We intro duce four algorithms for answering TPQ queries,with various approximation ratios in terms

of m and � . We give two practical, easy to implement solutions bettern suited for external memory

datasets, and two more theoretical in nature algorithms that give tighter answers, better suited for

main memory evaluation.

� We present various adaptations of these algorithms for practical scenarios,where we exploit existing

spatial index structures and transportation graphs to answer TPQs.

� We perform an extensive experimental evaluation of the proposedtechniques on real transportation

networks and points of interest, as well as on synthetic datasets for completeness.
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Paper Organization: The rest of the paper is organizedas follows: Section 2 gives the problem formu-

lation and related work. The approximation algorithms and their approximation bounds are presented in

Section3. Section4 presents the implementation of the approximation algorithms for large spatial databases.

Finally, a summary of an experimental evaluation of the proposedalgorithms using both synthetic and real

datasets is presented in Section 6.

2 Preliminaries

This section de�nes formally the TPQ problem and intro ducesthe basic notation that will be used in the

rest of the paper. Furthermore, a conciseoverview of related work is presented.

2.1 Problem Form ulation

We consider solutions for the TPQ problem on metric graphs. Given a connected graph G(V; E) with n

vertices V = f v1; : : : ; vn g and s edgesE = f e1; : : : ; esg, we denote the cost of traversing a path vi ; : : : ; vj

with c(vi ; : : : ; vj ) � 0.

De�nition 1. G is a metric graph if it satis�es the following conditions:

1. c(vi ; vj ) = 0 i� vi = vj

2. c(vi ; vj ) = c(vj ; vi )

3. The triangle inequality c(vi ; vk ) + c(vk ; vj ) � c(vi ; vj )

Given a set of m categoriesC= f C1; : : : ; Cm g (where m � n) and a mapping function � : vi � ! Cj that

maps each vertex vi 2 V to a category Cj 2 C, the TPQ problem can be de�ned as follows:

De�nition 2. Given a set R � C (R = f R1; R2; : : : ; Rk g), a starting vertex S and an ending vertex E,

identify the vertex traversal T = f S;vt 1 ; : : : ; vt k ; Eg (also called a trip) from S to E that visits at least one

vertex from each category in R (i.e., [ k
i =1 � (vt i ) = R) and has the minimum possiblecost c(T ) (i.e., for any

other feasible trip T 0 satisfying the condition above, c(T ) � c(T 0)).

In the rest, the total number of vertices is denoted by n, the total number of categoriesby m, and the

maximum cardinalit y of any category by � . For easeof exposition, it will be assumedthat R = C, thus

k = m. Generalizations for R � C are straightforward (as will be discussedshortly).

2.2 Related W ork

In the context of spatial databases,the TPQ problem has not been addressedbefore. Most research has

concentrated on traditional spatial queriesand their variants, namely range queries [20], nearestneighbors

[15, 21, 31], continuous nearestneighbors [5, 39, 43], group nearestneighbors [28], reversenearestneighbors

[24], etc. All thesequeriesare fundamentally di�eren t from TPQ sincethey do not considerthe computation

of optimal paths connecting a starting and an ending point, given a graph and intermediate points.

Research in spatial databasesalso addressesapplications in spatial networks represented by graphs,

instead of the traditional Euclidean space. Recent papers that extend various types of queries to spatial

networks are [29, 23, 32]. Most of the solutions therein are basedon traditional graph algorithms [10, 25].

Clustering in a road network databasehas been studied in [45], where a very e�cien t data structure was

proposedbasedon the ideasof [33]. Likewise,here we study the TPQ problem on road networks, as well.

The Traveling SalesmanProblem (TSP) has received a lot of attention in the last thirt y years. A simple

polynomial time 2-approximation algorithm for TSP on a metric graph can be obtained using the Minim um
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Spanning Tree (MST) [10]. The best constant approximation ratio for metric TSP is the 3
2 -approximation

that can be derived by the Christo�des algorithm [9]. Recently , a polynomial time approximation scheme

(PTAS) for Euclidean TSP has been proposedby Arora [2]. For any �xed " > 0 and any n nodes in R2

the randomized version of the scheme can achieve a (1 + ")-approximation in O(n logO( 1
" n) running time.

There are many approximation algorithms for variations of the TSP problem, e.g.,TSP with neighborhoods

[11], neverthelesstheseproblemsare not closelyrelated to TPQ queries. For more approximation algorithms

for di�eren t versionsof TSP, we refer to [1] and the referencestherein. Finally, there are many practical

heuristics for TSP [35], e.g., genetic and greedy algorithms, that work well for somepractical instancesof

the problem, but no approximation bounds are known about them.

TPQ is alsocloselyrelated to the GeneralizedMinim um SpanningTree (GMST) problem. The GMST is

a generalizedversion of the MST problem where the vertices in a graph G belong to m di�eren t categories.

A tree T is a GMST of G if T contains at least one vertex from each category and T has the minimum

possiblecost (total weight or total length). Even though the MST problem is in P, it is known that the

GMST is in N P. There are a few methods from the operational research and economicscommunit y that

proposeheuristics for solving this problem [26] without providing a detailed analysis on the approximation

bounds. The GMST problem is a special instanceof an even harder problem, the Group Steiner Tree (GST)

problem [16, 17, 22]. For example, polylogarithmic approximation algorithms have been proposedrecently

[14, 13]. Since the GMST problem is a special instance of the GST problem, such bounds apply to GMST

as well.

3 Fast Appro ximation Algorithms

In this sectionwe examineseveral approximation algorithms for answering the trip planning query. For each

solution we provide the approximation ratios in terms of m and � . For simplicit y, considerthat we are given

a complete graph Gc, containing one edgeper vertex pair vi ; vj (1 � i; j � n) representing the cost of the

shortest path from vi to vj in the original graph G. Let Tk = f vt 0 ; vt 1 ; : : : ; vt k g denote the partial trip that

has visited k vertices, excluding S (where S = vt 0 ). Trivially , it can be shown that a trip Tk constructed

on the induced graph Gc, has exactly the samecost as in graph G, with the only di�erence being that a

number of vertices visited on the path from a given vertex to another are hidden. Hiding irrelevant vertices

by using the induced graph Gc guaranteesthat any trip T producedby a given algorithm will be represented

by exactly m signi�can t vertices, which will simplify exposition substantially in what follows. In addition,

by removing from graph Gc all vertices that do not belong to any of the m categoriesin R, we can reduce

the size of the graph and simplify the construction of the algorithms. Given a solution obtained using the

reduced graph and the complete shortest path information for graph Gc, the original trip on graph G can

always be acquired. In the following discussion,T P
a denotesan approximation trip for problem P, while T P

o

denotesthe optimal trip. When P is clear from context the superscript is dropped.

3.1 Appro ximation in Terms of m

In this section we provide two greedy algorithms with tight approximation ratios with respect to m.

3.1.1 Nearest Neigh bor Algorithm

The most intuitiv e algorithm for solving TPQ is to form a trip by iterativ ely visiting the nearestneighbor of

the last vertex added to the trip from all vertices in the categoriesthat have not beenvisited yet, starting

from S. Formally, given a partial trip Tk with k < m, Tk+1 is obtained by inserting the vertex vt k +1 which is

the nearestneighbor of vt k from the set of vertices in R belonging to categoriesthat have not beencovered
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yet. In the end, the �nal trip is produced by connecting vt m to E . We call this algorithm A N N , which is

shown in Algorithm 1.

Algorithm 1 A N N (Gc; R ; S;E)
1: v = S, I = f 1; : : : ; mg, Ta = f Sg
2: for k = 1 to m do
3: v = the nearest N N (v; R i ) for all i 2 I
4: Ta  f vg
5: I  I � f i g
6: end for
7: Ta  f E g

Theorem 1. A N N gives a (2m +1 � 1)-approximation (with respect to the optimal solution). In addition,

this approximation bound is tight.

Proof. Without lossof generality, let Ta = f S;vt 1 ; : : : ; vt m ; Eg denotethe trip returned by A N N s.t. 8i; � (vt i ) =

Ri , where [ m
i =1 vt i = R. Let To = f S;wt 1 ; : : : ; wt m ; Eg denote the optimal trip, where [ m

i =1 wt i = R. Let

f w1; : : : ; wm g be a permutation of the vertices in To (excluding S and E) s.t. � (wi ) = Ri , and function

p(t j ) = i satisfying wt j = wi represents this permutation. Since vt k +1 is the nearest neighbor of vt k from

category Rk+1 by construction, c(vt k ; vt k +1 ) � c(vt k ; wk+1 ) given that � (wk+1 ) = Rk+1 . Clearly:

c(Ta ) = c(S;vt 1 ) +
P m � 1

k=1 c(vt k ; vt k +1 ) + c(vt m ; E ) � c(S;w1) +
P m � 1

k=1 c(vt k ; wk+1 ) + c(wm ; E )

By the triangle inequality:

c(vt 1 ; w2) � c(vt 1 ; S) + c(S;w2) � c(w1; S) + c(S;w2) = c(S;w1) + c(S;w2)

c(vt 2 ; w3) � c(vt 2 ; S) + c(S;w3) = c(S;vt 2 ) + c(S;w3)

� c(S;vt 1 ) + c(vt 1 ; vt 2 ) + c(S;w3) � c(S;vt 1 ) + c(vt 1 ; S) + c(S;vt 2 ) + c(S;w3)

� c(S;w1) + c(S;w1) + c(S;w2) + c(S;w3) = 2c(S;w1) + c(S;w2) + c(S;w3)

: : :

c(vt m � 1 ; wm ) � 2m � 2c(S;w1) + 2m � 3c(S;w2) + : : : + 2c(S;wm � 2) + c(S;wm � 1) + c(S;wm )

=
P m � 1

i =1 2m � 1� i c(S;wi ) + c(S;wm )

This infers that c(S;w1) +
P m � 1

k=1 c(vt k ; wk+1 ) �
P m

k=1 2m � k c(S;wk ), hencec(Ta) �
P m

k=1 2m � k+1 c(S;wk ) +

c(wm ; E ). It also holds that c(S;wi ) � c(S;wt 1 ) + c(wt 1 ; wt 2 ) + : : : + c(wt j � 1 ; wt j ) where p(t j ) = i . By

applying this inequality to every c(S;wi ) for i = f 1; : : : ; mg, denote the frequency of appearanceof each

term with a function f . Clearly, f (c(S;wt 1 )) = m � f (c(wt 1 ; wt 2 )) � : : : � f (c(wt m � 1 ; wt m )). Thus:

c(Ta ) �
P m

k=1 2m � k+1 c(S;wk ) + c(wm ; E )

�
P m

k=1 2k (c(S;wt 1 ) +
P m � 1

i =1 c(wt i ; wt i +1 ) + c(wt m ; E ))

� (2m +1 � 1)c(To); (since r 0 + : : : + r m = 1� r m +1

1� r )

This gives the upper bound of the approximation ratio of A N N for the TPQ problem. This bound is

tight, i.e., it is also the lower bound in the worst case. A scenariothat illustrates this is shown in Figure

2. Suppose c(S;E) = a, and vertices w1; : : : ; wm are all co-located to the right of E , at distance " � a.

Contrariwise, v1; : : : ; vm are located to the left of S with distance c(S;v1) = a and c(vi ; vi +1 ) = 2i a (where

8i : � (vi ); � (wi ) = Ri ). It can be observed that the closestpoint to S is v1 with cost a. The closestto v1 is
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Figure 2: Lower Bound Analysis of A N N

v2 with cost c(v1; v2) = 2a, and so on. So A N N will always choosevi +1 as the next vertex of the trip. So

Ta = f S;v1; : : : ; vm ; Eg and c(Ta) = 2
P m � 1

i =1 2i a + a = (2m +1 � 1)a, where the optimal trip in this casehas

cost c(To) = a + 2" . So c(Ta )
c(To ) � 2m +1 � 1. This completesthe proof.

3.1.2 Minim um Distance Algorithm

This section intro ducesa novel greedy algorithm, called A M D , that achievesa much better approximation

bound, in comparisonwith the previous algorithm. The algorithm choosesa set of vertices f v1; : : : ; vm g, one

vertex per category in R, such that the sum of costsc(S;vi ) + c(vi ; E ) per vi is the minimum cost amongall

vertices belonging to the respective category R i (i.e., this is the vertex from category R i with the minimum

traveling distance from S to E). After the set of vertices has beendiscovered, the algorithm createsa trip

from S to E by traversing these vertices in nearestneighbor order, i.e., by visiting the nearest neighbor of

the last vertex added to the trip, starting with S. The algorithm is shown in Algorithm 2.

Algorithm 2 A M D (Gc; R ; S;E)
1: U = ;
2: for i = 1 to m do
3: U  � (v) = R i : c(S; v) + c(v; E ) is minimized
4: v = S, Ta  f Sg
5: while U 6= ; do
6: v = N N (v; U)
7: Ta  f vg
8: Remove v from U
9: end while

10: Ta  f E g

It can be shown that the trip obtained by A M D is an m-approximate solution if m is odd, and an

m + 1-approximate solution if m is even.

Theorem 2. If m is odd then A M D givesan m-approximate solution. In addition this approximation bound

is tight.

Proof. To prove this theorem, we prove a stronger claim. After selecting one vertex from each category

as already discussed,a trip formed by any permutation of those vertices will satisfy c(Ta) � mc(To). Let

Ta = f S;vt 1 ; : : : ; vt m ; Eg denote a random permutation of the selectedvertices:

c(Ta) = c(S;vt 1 ) + c(vt 1 ; vt 2 ) + : : : + c(vt m ; E ) � c(S;vt 1 ) + (c(vt 1 ; E ) + c(E ; vt 2 ))+

(c(vt 2 ; S) + c(S;vt 3 )) + : : : + (c(vt m � 2 ; E ) + c(E ; vt m � 1 )) + (c(vt m � 1 ; S) + c(S;vt m )) + c(vt m ; E )

= (c(S;vt 1 ) + c(vt 1 ; E )) + (c(E ; vt 2 ) + c(vt 2 ; S)) + : : : + (c(S;vt m � 2 ) + c(vt m � 2 ; E ))+

(c(E ; vt m � 1 ) + c(vt m � 1 ; S)) + (c(S;vt m ) + c(vt m ; E )) =
P m

k=1 (c(S;vt k ) + c(vt k ; E ))

Given the optimal solution To = f S;w1; : : : ; wm ; Eg and Ta �
P m

k=1 (c(S;vt k ) + c(vt k ; E )), the sum can

be rewritten in arbitrary order by reshu�ing subscripts t i with an appropriate mapping function p(t i ) = i

without e�ect. By reshu�ing the subscripts such that Ta �
P m

k=1 (c(S;vk ) + c(vk ; E )) and � (vi ); � (wi ) = Ri
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Figure 3: Lower Bound Analysis of A M D

(i.e., by reorganizing the sequenceof vertices in the given permutation to correspond to the order by which

every category is visited in the optimal solution), we get:

Ta �
mX

k=1

(c(S;vk ) + c(vk ; E )) �
mX

k=1

(c(S;wk ) + c(wk ; E )) � mc(To)

The �rst step holds by construction and the last step holds due to the triangle inequality c(S;wi ) +

c(wi ; E ) � c(To) given that the optimal trip passesthrough wi .

To show that this bound is tight, we prove by example. Consider the worst casescenarioof Figure 3.

Given that c(S;E) = 0 we arrange the m vertices f v1; : : : ; vm g, around S on a circle of radius a, where the

connectivity between them is only through S. We also position vertices f w1; : : : ; w2g at exactly the same

location in spaceand distance a + " from S. The optimal solution has cost 2(a + "), while A M D has cost

2ma. Thus, c(Ta )
c(To ) � m. This completesthe proof.

Theorem 3. If m is even then A M D givesan m + 1-approximate solution. In addition this approximation

bound is tight.

Proof. A similar proof holds.

3.2 Appro ximation in Terms of �

In this section we consider an Integer Linear Programming approach for the TPQ problem which achieves

a linear approximation bound w.r.t. � , i.e., the maximum category cardinalit y. Consider an alternativ e

formulation of the TPQ problem with the constraint that S = E and denote this problem as Loop Trip

Planning Query(LTPQ) problem. Next we show how to obtain a 3
2 � -approximation for LTPQ using Integer

Linear Programming.

Let A = (aj i ) be the m � (n + 1) incidencematrix of G, where rows correspond to the m categories,and

columns represent the n + 1 vertices (including v0 = S = E). A's elements are arranged such that aj i = 1

if � (vi ) = Rj , aj i = 0 otherwise. Clearly, � = max j
P

i aj i , i.e., each category contains at most � distinct

vertices. Let indicator variable y(v) = 1 if vertex v is in a given trip and 0 otherwise. Similarly, let x(e) = 1

if the edgee is in a given trip and 0 otherwise. For any S � V, let � (S) be the edgescontained in the cut

(S; V n S). The integer programming formulation for the LTPQ problem is the following:

Problem I PLT P Q = minimize
P

e2E c(e)x(e), subject to:

1.
P

e2 � ( f vg) x(e) = 2y(v), for all v 2 V,

2.
P

e2 � (S) x(e) � 2y(v), for all S � V; v0 =2 S, and all v 2 S,

3.
P n

i =1 aj i y(vi ) � 1, for all j = 1; : : : ; m,
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4. y(v0) = 1,

5. y(vi ) 2 f 0; 1g, x(ei ) 2 f 0; 1g

Condition 1 guarantees that for every vertex in the trip there are exactly two edgesincident on it.

Condition 2 prevents subtrips, that is the trip cannot consistof two disjoint subtrips. Condition 3 guarantees

that the chosenvertices cover all categoriesin R. Condition 4 guaranteesthat v0 is in the trip. In order to

simplify the problem we can relax the above Integer Programming into LP LT P Q by relaxing Conditions 5 to:

0 � y(v); x(e) � 1. Any e�cien t algorithm for solving Linear Programming could now be applied to solve

LPLT P Q [36]. In order to get a feasible solution for I PLT P Q , we apply the randomized rounding scheme

stated below:

Randomized Rounding: For solutions obtained by LP LT P Q , set y(vi ) = 1 if y(vi ) � 1
� . If the trip visits

vertices from the samecategory more than once, randomly selectone to keepin the trip and set y(vj ) = 0

for the rest.

Theorem 4. LPLT P Q together with the randomized rounding schemeabove �nds a 3
2 � -approximation for

I PLT P Q , i.e., the integer programming approach is able to �nd a 3
2 � -approximation for the LTPQ problem.

The proof of theorem 4 is quite involvedand thus presented asan Appendix. We denoteany algorithm for

LTPQ as A LT P Q . A TPQ problem can be converted into an LTPQ problem by creating a special category

Cm +1 = E. The solution from this converted LTPQ problem is guaranteed to passthrough E. Using the

result returned by A LT P Q , a trip with constant distortion could be obtained for TPQ. This step is shown

as part of the proof for the next lemma.

Lemma 1. A � -approximation algorithm for LTPQ implies a 3� -approximation algorithm for TPQ.

Proof. Suppose A LT P Q returns a cycle T LT P Q
a1 = f S;vi 1 ; : : : ; vi k � 1 ; E ; vi k ; : : : ; vi m ; Sg. We can construct

an approximate trip for TPQ by reordering this trip as T T P Q
a = f S;vi 1 ; : : : ; vi k � 1 ; vi k ; : : : ; vi m ; Eg. By the

triangle inequality, c(S;E) � c(S;vi 1 ; : : : ; vi k � 1 ; E ) and c(S;E) � c(E ; vi k ; : : : ; vi m ; S), combining these two

we get c(S;E) � 1
2 c(T LT P Q

a1 ). Now consider the cost of trip T T P Q
a , which is

c(T T P Q
a ) = c(S;vi 1 ; : : : ; vi k � 1 ; vi k ; : : : ; vi m ) + c(vi m ; E )

� c(S;vi 1 ; : : : ; vi k � 1 ; vi k ; : : : ; vi m ) + c(vi m ; S) + c(S;E)

� c(T LT P Q
a1 ) + 1

2 c(T LT P Q
a1 )

So we get:

c(T T P Q
a ) �

3
2

c(T LT P Q
a1 ) �

3
2

� c(T LT P Q
o )

Now, supposethe optimal trip for this TPQ problem is T T P Q
o = f S;vj 1 ; : : : ; vj m ; Eg. Then, a feasiblecyclefor

LTPQ is T LT P Q
a2 = f S;vj 1 ; : : : ; vj m ; E ; Sg. By the triangle inequality, c(T LT P Q

o ) � c(T LT QP
a2 ) � 2c(T T P Q

o ).

By substituting c(T LT P Q
o ) � 2c(T T P Q

o ) into the �rst inequality above we get T T P Q
a � 3� c(T T P Q

o ). This

completesthe proof.

Therefore, by combining theorem 4 and lemma 1, we get

Lemma 2. There is a polynomial time algorithm based on Integer Linear Programming for the TPQ problem

with a 9
2 � -approximation.
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3.3 Appro ximation in Terms of m and �

In Section2 we discussedthe GeneralizedMinim um SpanningTree(GMST) problem which is closelyrelated

to the TPQ problem. Recall that the TSP problem is closely related to the Minim um SpanningTree (MST)

problem, where a 2-approximation algorithm can be obtained for TSP basedon MST. In similar fashion, it

is expected that one can obtain an approximate algorithm for TPQ problem, basedon an approximation

algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. Supposewe are given an approximation

algorithm for GMST problem, denoted A GM ST . We can construct an approximation algorithm for TPQ

problem as shown in Algorithm 3.

Algorithm 3 Appr oximation Algorithm f or TPQ Based on GMST
1: Compute a � -approximation TreeGM S T

a for G rooted at S using A GM S T .
2: Let LT be the list of vertices visited in a pre-order tree walk of TreeGM S T

a .
3: Move E to the end of LT .
4: Return T T P Q

a as the ordered list of vertices in LT .

Lemma 3. If we use a � -approximation algorithm for GMST problem, then Algorithm 3 for TPQ problem

is a 2� -approximation algorithm.

Proof. The weight of the generalizedminimum spanning tree is a lower bound on the cost of an optimal

trip for TPQ: c(T T P Q
o ) � c(TreeGM ST

o ). The full walk W of TreeGM ST
a from S to E traversesevery edge

of TreeGM ST
a at most twice. Clearly, c(W ) � 2 c(TreeGM ST

a ) � 2 � c(TreeGM ST
o ). These inequalities imply

that c(W ) � 2� c(TreeGM ST
o ) � 2� c(T T P Q

o ). Notice that T T P Q
a could be obtained by deleting verticesfrom

the full walk W (the proof of this follows a similar proof for the 2-approximation algorithm for TSP based

on MST [10]). This infers that c(T T P Q
a ) � c(W ). By combining theseresults c(T T P Q

a ) � 2� c(T T P Q
o ).

We can get a solution for TPQ by using Lemma 3 and any known approximation algorithm for GST,

as GMST is a special instance of GST. For example, the O(log2 � logm) algorithm proposedin [14], which

yields a solution to TPQ with the samecomplexity.

4 Algorithm Implemen tations in Spatial Databases

In this sectionwediscussimplementation issuesof the proposedTPQ algorithms from a practical perspective,

given disk resident datasets and appropriate index structures. We show how the index structures can be

utilized to our bene�t, for evaluating TPQs e�cien tly . We opt at providing designdetails only for the greedy

algorithms, A N N and A M D sincethey are simpler to implement, while the Integer Linear Programming and

GMST approachesare not very practical for external memory applications.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean spacewhere a spatial dataset is indexed using an R-tree [20]. We

show how to adapt A N N and A M D in this scenario. For simplicit y, we analyzethe casewherea singleR-tree

storesspatial data from all categories.

Implemen tation of A N N . The implementation of A N N using an R-tree is straightforward. Suppose

a partial trip Tk = f S;p1; : : : ; pk g has already been constructed and let C(Tk ) = [ k
i =1 � (pi ), denote the

categoriesvisited by Tk . By performing a nearestneighbor query with origin pk , using any well known NN

algorithm, until a new point pk+1 is found, such that � (pk+1 ) =2 C(Tk ), we iterativ ely extend the trip one
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vertex at a time. After all categoriesin R havebeencovered,weconnectthe last vertex to E and the complete

trip is returned. The main advantageof A N N is its e�ciency . Nearestneighbor query in R-tree hasbeenwell

studied. One could expect very fast query performancefor A N N . However, the main disadvantage of A N N

is the problem of \searching without directions". Consider the exampleshown in Figure 4(A). A N N will �nd

the trip T1 = f S ! A1 ! B 1 ! C1 ! Eg instead of the optimal trip T2 = f S ! C2 ! A2 ! B 2 ! Eg.

In A N N , the search in every step greedily expandsthe point that is closestto the last point in the partial trip

without consideringthe end destination, i.e., without consideringthe direction. The more intuitiv e approach

is to limit the search within a vicinit y areade�ned by S and E as the ellipseshown in Figure 4(B). The next

algorithm addressesthis problem.

Implemen tation of A M D . Next, we show how to implement A M D using an R-tree. The main idea is

to locate the m points, one from each category in R, that minimize the Euclidean distance D(S;E ; p) =

c(S;p) + c(p;E) from S to E through p e�cien tly using the structure. We call this the minimum distance

query. This query meets our intuition that the trip planning query should be limited within the vicinit y

area of the line segment de�ned by S;E (as in the example shown in Figure 4(B)). The minimum distance

query can be answered by modifying any well known NN search algorithm for R-trees [31], where instead of

using the traditional M inD ist measurefor sorting candidate distances,we use D. Given S and E we run

the modi�ed NN search oncefor locating all m points incrementally , and report the �nal trip.

All NN algorithms basedon R-treescompute the nearestneighbors incrementally using the tree structure

to guide the search. An interesting problem that arises in this caseis how to geometrically compute the

minimum possibledistance D(S;E ; p) betweenpoints S;E and any point p inside a given MBR M (similar

to the M inD ist heuristic of the traditional search). This problem can be reducedto that of �nding the point

p on line segment AB that minimizes D(S;E ; p), which can then be usedto �nd the minimum distance from

M , by applying it on the MBR boundaries lying closer to line segment SE. There are three possiblecases

as shown in Figure 5. Point p can be computed by projecting the mirror image E 0 of E , given AB . It can

be proved that:

Lemma 4. Given line segmentsAB and SE, the point p that minimizes D(S;E ; p) is:

CaseA: If EE 0 intersects AB , then p is the intersection of AB and SE 0.

CaseB: If EE 0 and SE do not intersect AB , then p is either A or B .

CaseC: If SE intersects AB , then p is the intersection of SE and AB .

Using the lemma, we can easily compute the minimum distancesD(S;E ; M ) for appropriately sorting

the R-tree MBRs during the NN search. The details of the minimum distance query algorithm is shown

in Algorithm 4. For simplicit y, here we show the algorithm that searches for a point from one particular

category only, which can easily be extendedfor multiple categories. In line 8 of the algorithm, if c is a node

then D(S;E ; c) is calculated by applying Lemma 4 with line segments from the borders of the MBR of c; if
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Figure 6: A simple road network.

c is a point then D(S;E ; c) is the length jScj + jcEj. Straightforwardly, the algorithm can also be modi�ed

for returning the top k points.

Algorithm 4 Algorithm Minimum Dist ance Quer y For R-trees
Input: Points S, E , Category R i , R-tree rtree

1: Priorit yQueue QR = ; , QS = f (r tr ee:root; 0)g; B = 1
2: while QS not empty do
3: n = QS:top;
4: if n:dist � B then
5: return QR:top
6: for all children c of n do
7: dist = D(S;E ; c)
8: if n is an index node then
9: QS  (c;dist )

10: else if � (M ) = R i then . (c is a point)
11: QR  (c;dist )
12: if dist � B then B = dist

4.2 Applications in Road Net works

An interesting application of TPQs is on road network databases. Given a graph N representing a road

network and a separateset P representing points of interest (gas stations, hotels, restaurants, etc.) located

at �xed coordinates on the edgesof the graph, we would like to develop appropriate index structures in order

to answer e�cien tly trip planning queries for visiting points of interest in P using the underlying network

N . Figure 6 shows an exampleroad network, along with various points of interest belonging to four di�eren t

categories.

For our purposeswe represent the road network using techniques from [33, 45, 29]. In summary, the

adjacency list of N and set P are stored as two separate
at �les indexed by B + -trees. For that purpose,

the location of any point p 2 P is represented as an o�set from the road network node with the smallest

identi�er that is incident on the edgecontaining p. For example, point p4 is 1.1 units away from node n3.

Implemen tation of A N N . Nearest neighbor querieson road networks have been studied in [29], where

a simple extension of the well known Dijkstra algorithm [10] for the single-sourceshortest-path problem on

weighted graphs is utilized to locate the nearestpoint of interest to a given query point. As with the R-tree

case,straightforwardly, we can utilize the algorithm of [29] to incrementally locate the nearest neighbor of

the last stop added to the trip, that belongs to a category that has not been visited yet. The algorithm

starts from point S and when at least one stop from each category has beenadded to the trip, the shortest

path from the last discovered stop to E is computed.

Implemen tation of A M D . Similarly to the R-tree approach, the idea is to �rst locate the m points from

categoriesin R that minimize the network distancec(S;pi ; E ) using the underlying graph N , and then create
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a trip that traversesall pi in a nearestneighbor order, from S to E. It is easyto show with a counter example

that simply �nding a point p that �rst minimizes cost c(S;p) and then traversesthe shortest path from p

to E, does not necessarilyminimize cost c(S;p;E). Thus, Dijkstra's algorithm cannot be directly applied

to solve this problem. Alternativ ely, we proposean algorithm for identifying such points of interest. The

procedure is shown in Algorithm 5.

The algorithm locates a point of interest p : � (p) 2 R i (given Ri ) such that the distance c(S;p;E) is

minimized. The search beginsfrom S and incrementally expandsall possiblepaths from S to E through all

points p. Whenever such a path is computed and all other partial trips have cost smaller than the tentativ e

best cost, the search stops. The key idea of the algorithm is to separatepartial trips into two categories:

one that contains only paths that have not discovered a point of interest yet, and one that contains paths

that have. Paths in the �rst category compete to �nd the shortest possibleroute from S to any p. Paths in

the secondcategory compete to �nd the shortest path from their respective p to E. The overall best path is

the one that minimizes the sum of both costs.

Algorithm 5 Algorithm Minim um Distance Query For Road Netw orks
Input: Graph N , Points of interest P , Points S, E , Category R i

1: For each n i 2 N : n i :cp = n i :c: p = 1
2: Priorit yQueue PQ = f Sg, B = 1 , TB = ;
3: while PQ not empty do
4: T = PQ:top
5: if T :c � B then return TB

6: for each node n adjacent to T :last do
7: T 0 = T . (create a copy)
8: if T 0 does not contain a p then
9: if 9p : p 2 P ; � (p) = R i on edge(T 0:last; n) then

10: T 0:c+ = c(T 0:last; p)
11: T 0  p, PQ  T 0

12: else
13: T 0:c+ = c(T 0:last; n), T 0  n
14: if n:c: p > T 0:c then
15: n:c: p = T 0:c, PQ  T 0

16: else
17: if edge(T 0; n) contains E then
18: T 0:c+ = c(T 0:last; E ), T 0  E
19: Update B and TB accordingly
20: else
21: T 0:c+ = c(T 0:last; n), T 0  n
22: if n:cp > T 0:c then
23: n:cp = T 0:c, PQ  T 0

24: endif
25: endfor
26: endwhile

The algorithm proceedsgreedily by expanding at every step the trip with the smallest current cost.

Furthermore, in order to be able to prune trips that are not promising, basedon already discovered trips,

the algorithm maintains two partial best costsper node n 2 N . Cost n:cp (n:c: p) represents the partial cost

of the best trip that passesthrough this node and that has (has not) discovered an interesting point yet.

After all k points(one from each category R i 2 R) have beendiscoveredby iterativ ely calling this algorithm,

an approximate trip for TPQ can be produced. It is also possibleto designan incremental algorithm that

discovers all points from categoriesin R concurrently , but this will appear in the full version of the paper.

Next we use an example to illustrate how our algorithm works. Consider the caseshown in Figure 6.
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step priorit y queue updates
1 Sp1(1), Sn2(2) n2:c: p = 2
2 Sp1n1(2), Sn2p3(2:8), Sp1n2(4), Sn2p1(5), Sn2n4(7) n1:cp = 2, n2:cp = 4, n4:c: p = 7
3 Sn2p3n2(3:6), Sp1n1n4(6), Sn2p3n3(8), Sn2n4p2(10:2) n2:cp = 3:6, n3:cp = 8, n4:cp = 6,

B = 7, TB = Sp1n2E
4 Sp1n1n4(6), Sn2p3n3(8), Sn2n4p2(10:2) B = 6:6, TB = Sn2p3n2E
5 Sn2p3n3(8), Sn2n4p3(10:2) B = 6:6, TB = Sn2p3n2E
6 Algorithm stops and returns TB B = 6:6, TB = Sn2p3n2E

Table 1: Applying Algorithm 5 to example in Figure 6
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Figure 7: The search region of a minim um distance query

Using the simple Dijkstra basedapproach, i.e., �nding a point p that �rst minimizes cost c(S;p) and then

traversesthe shortest path from p to E, will return the trip S ! p1 ! n2 ! E with distanceof 7:0. However,

a better answer is S ! n2 ! p3 ! n2 ! E , which is achieved by our algorithm, with distance of 6.6. In

Table 1 the priorit y queue that contains the search paths along with the update to the node partial best

costs is listed in a step by step fashion. The pruning steps of our algorithm make it very e�cien t. A lot

of unnecessarysearch has beenpruned out during the expansions. For example, in step 3 the partial path

Sn2p1 is pruned out as c(Sn2p1n1) > n1:cp and c(sn2p1n2) > n2:cp. Our algorithm can also be used to

answer top k queries. Simply maintaining a priorit y queuefor TB and update B corresponding to the kth

complete path cost. For example if k = 3, then in step 4 TB will be updated to Sn2p3n2E(6:6); Sp1n2E(7)

and in step 5 path Sp1n1n4E(8) will be added and the search will stop as by now the top partial path has

cost equal to the third best complete path.

5 Extensions

5.1 I/O Analysis for the Minim um Distance Query

In this sectionwestudy the I/O boundsfor the minimum distancequery in Euclidean space,i.e., the expected

number of I/Os when we try to �nd the point p that minimizes D(S;E ; p) from a point set indexed with an

R-tree. By carefully examining Algorithm 4 and Lemma 4, we can claim the following:

Claim 1. The lower bound of I/Os for minimum distance queriesis the number of MBRs that intersect with

line segment SE.

For the averagecase,the classicalcostmodelsfor nearestneighbor queriescanbeused[41, 7, 6, 30, 40]. On

averagethe I/O for any type of querieson R-trees is given by the expectednode access:N A =
P h� 1

i =0 ni PN A i

whereh is the height of the tree, n i is the number of nodesin level i and PN A i is the probabilit y that a node

at level i is accessed.The only peculiarity of minimum distance queriesis that their search region SR, i.e.,

the area of the data spacethat may contain candidate results, forms an ellipse with focii the points S;E .
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It follows immediately that, on average,in order to answer a minimum distance query we have to visit all

MBRs that intersect with its respective SR. Thus, if we quantify the sizeof SR we can estimate PN A i .

Consider the example in Figure 7, and suppose p1 is currently the point that minimizes D(S;E ; p1).

Then the ellipse de�ned by S;E ; p1 will be the region that contains possiblebetter candidates,e.g., p in this

example. This is true due to the property of the ellipse that r 1 + r2 = 2a, i.e., any point p0 on the border

of the ellipse satis�es D(S;E ; p0) = 2a. Therefore, to estimate the I/O cost of the query all we need to do

is estimate quantit y a. Assuming uniformit y and a unit squareuniverse,we have Ar eaSR = k=jP j. We also

know that Ar eaSR = Ar eaellipse = 2� =
p

4ac � b2 = 2� =
p

4ac� (a2 � c2). Hence,

a = 2c +

r

5c2 � (
2� jP j

k
)2 (1)

With S, E , c = jSE j=2 and Equation 1 we could determine the search region for a k minimum distance

query. With the search region being identi�ed, one could derive the probabilit y of any node of the R-tree

being accessed.Then, the standard cost model analysis in [7, 6, 30, 40] can be straightforwardly be applied,

hencethe details are omitted. Generalizationsfor non-uniform distributions can also be addressedsimilarly

to the analysis presented in [40], where few modi�cations are required given the ellipsoidal shape of the

search regions. The I/O estimation for queries on road networks is much harder to analyze and heavily

dependson the particular data structures used, therefore it is left as future work.

5.2 Hybrid Approac h

We also consider a hybrid approach to the trip planning query for disk baseddatasets (in both Euclidean

spaceand road networks). Instead of evaluating the queriesusing the proposedalgorithms, the basic idea

is to �rst selecta su�cien t number of good candidates from disk, and then processthose in main memory.

We apply the minimum distance query to locate the top k points from each respective category and then,

assumingthat the query visits a total of m categories,the k � m points are processedin main memory using

any of the strategiesdiscussedin Section 3. In addition, an exhaustive search is also possible. In this case,

there are mk number of instancesto be checked. If mk is large, a subsetcan be randomly selectedfor further

processing,or the value of k is reduced. Clearly, the hybrid approach will �nd a solution at least as good as

algorithm A M D . In particular, since the larger the value of k the closer the solution will be to the optimal

answer, with a hybrid approach the user can tune the accuracy of the results, according to the cost she is

willing to pay.

6 Exp erimen tal Evaluation

This sectionpresents a comprehensive performanceevaluation of the proposedtechniquesfor TPQ in spatial

databases.We usedboth synthetic datasetsgeneratedon real road networks and real datasetsfrom the state

of California. All experiments were run on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Exp erimen tal Setup. To generate synthetic datasets we obtained two real road networks, the city of

Oldenburg(OL) with 6105nodesand 7035edgesand San Joaquin county(TG) with 18263nodesand 23874

edges,from [8]. For each dataset, we generateduniformly at random a number of points of interest on the

edgesof the network. Datasets with varying number of categories,as well as varying densitiesof points per

categoryweregenerated.The total number of categoriesis in the rangem 2 [5; 30],while the categorydensity

is in the range of � 2 [0:01N; 0:25N ], where N is the total number of edgesin the network. For Euclidean

datasets,points of interest are generatedusing the road networks, but the distancesare computed as direct

Euclideandistancesbetweenpoints, without the network constraints. Our synthetic datasethasthe 
exibilit y
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Figure 8: Real dataset from California

of controlling di�eren t densities and number of categories,however it is basedon uniform distribution on

road network (not necessarilyuniform in the Euclidean space). To study the generaldistribution of di�eren t

categories,we also obtain a real dataset for our experiments. First we get a collection of points of interests

that fall into di�eren t categoriesfor the state of California from [37] asshown in Figure 8(a), then we obtain

the road network for the samestate from [27] asshown in Figure 8(b). Both of them represent the locations

in a longitude/latitude space,which makes the merging step straightforward. The California dataset has

63 di�eren t categories, including airports, hospitals, bars, etc., and altogether more than 100; 000 points.

Di�eren t categoriesexhibit very di�eren t densities and distributions. The road network in California has

21; 048 nodesand 22; 830 edges.For all experiments, we generate100 querieswith randomly chosenS and

E.

Road Net work Datasets. In this part we study the performanceof the two algorithms for road networks.

First, we study the e�ects of m and � . Due to lack of spacewe present the results for the OL baseddatasets

only. The results for the TG datasetswere similar. Figure 9(a) plots the results for the averagetrip length

asa function of m, for � = 0:01N . Figure 9(b) plots the averagetrip length asa function of � , for m = 30. In

both cases,clearly A M D outperforms A N N . In general,A M D givesa trip that is 20%-40%better (in terms

of trip length) than the one obtained from A N N . It is interesting to note that with the increaseof m and

the decreaseof � the performancegap betweenthe two algorithms increases.A N N is greatly a�ected by the

relative locations of points as it greedily follows the nearestpoint from the remaining categoriesirrespective

of its direction with respect to the destination E. With the increaseof m, the probabilit y that A N N wanders

o� the correct direction increases.With the decreaseof � , the probabilit y that the next nearestneighbor is

closeenough decreases,which in turn increasesthe chance that the algorithm will move far away from E.

However, for both casesA M D is not a�ected.

We also study the query cost of the two algorithms measuredby the averagerunning time of one query.

Figure 10(a) plots the results as a function of density, and m = 15. In general, A N N has smaller runtime.

The reasonis that the A M D query in the road network is much more complexand needsto visit an increased

number of nodesmultiple times.

Euclidean Datasets. Due to lack of spacewe omit the plots for Euclidean datasets. In general,the results

and conclusionswere the sameas for the road network datasets. A small di�erence is that the performance

of the two algorithms is measuredwith respect to the total number of R-tree I/Os. In this case,A N N was
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Figure 9: Averagetrip length of A N N and A M D
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Figure 10: Query cost

more e�cien t than A M D , especially for higher densitiesas shown in Figure 10(b).

General Datasets and Query W orkloads. In the previous experiments datasets had a �xed density

for all categories.Furthermore, querieshad to visit all categories.Here, we examinea more generalsetting

where the density for di�eren t categoriesis not �xed and queriesneedto visit a subsetR of all categories.

Figure 9(c) summarizesthe results. We set m = 20 and � uniformly distributed in [0:01N; 0:20N ]. We

experiment with subsetsof varying cardinalities per query and measurethe averagetrip length returned by

both algorithms. A M D outperforms A N N by 15% in the worst case.With the increaseof the cardinalit y of

R, the performancegain on A M D increases.

Real Datasets. So far we have tested our algorithm on synthetic datasets To compare the performance

of the algorithms in a real setting, we apply A N N and A M D on the real dataset from California. There are

63 di�eren t categoriesin this dataset, hencewe show the query workload that requires visits to a subsetof

categories(up to 30 randomly selectedcategories). Figure 11(a) comparesthe averagetrip length obtained

by A N N and A M D in the road network case. In this case,we simply uselongitude and latitude as the point

coordinates and calculate the distance basedon that. So the absolute value for the distance is small. As

we have noticed, A M D still outperforms A N N in terms of trip length, however, with the price of a higher

query cost as indicated in Figure 11(b). Notice that the running time in this experiment is much higher than

the one in Figure 10(a) as we are dealing with a much larger network as well as more data points. Similar

results have beenobserved for the samedataset in Euclidean space(where the cost is measuredin I/Os) and

they are omitted. It is interesting to note that the trip length is increasingw.r.t. the number of categories
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Figure 11: Experiments with real dataset

in a non-linear fashion (e.g., from 25 categoriesto 30 categories),as compared to the sameexperiment on

the synthetic dataset shown in Figure 9(a). This could be explained by the non-uniformit y property and

skewnessof the real dataset. For example, there are more than 900 airports and only about 50 harbors. So

when a query category for harbors is included, one expect to seea steep increasein the trip length.

Study of the Hybrid Approac h. We also investigate the e�ectiv enessof the hybrid approach as sug-

gestedin Section5.2. Our experiments on synthetic datasetsshow that the hybrid approach improvesresults

over A M D by a small margin. This is expected due to the uniformit y of the underlying datasets. With the

real dataset we seea noticeable improvement with the hybrid approach over A M D (we set m = 5). This

is mainly due to the skewed distribution in di�eren t categoriesin the real dataset. The hybrid approach

incurs additional computational cost in main memory (i.e., cpu time) but identi�es better trips. We omit

the running time of hybrid approach from Figure 11(b) as it exhibits exponential increase(O(mk )) with the

number of categories.However, when the number of categoriesis small, the running time of hybrid approach

is comparable to A N N and A M D , e.g., when m = 5 its running time is about 3:8 secondsfor one query, on

average.

7 Conclusions and Future Work

We intro duced a novel query for spatial databases,namely the Trip Planning Query. First, we argued

that this problem is NP-Hard, and then we developed four polynomial time approximation algorithms, with

e�cien t running time and good worst caseguarantees. We also showed how to apply these algorithms in

practical scenarios,both for Euclidean spacesand Road Networks. Finally, we presented a comprehensive

experimental evaluation. For future work we plan to extend our algorithms to support trips with user

de�ned constraints. Examples include visiting a certain category during a speci�ed time period [3], visiting

categoriesin a given order, and more.
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8 App endix

8.1 Appro ximation Ratio of I PLT P Q

In order to provethe approximation ratio, weneedsomeauxiliary results. Considerthe IntegerProgramming

formulation of the classicalTSP.

Problem I P2: Z2 =minimize
P

e2E cexe, subject to

1.
P

e2 � ( i ) xe = 2, for all i 2 V,

2.
P

e2 � (S) xe � 2, for all S � V; S 6= ; ,

3. xe 2 f 0; 1g, for all e 2 E

Let the LP2 be the relaxation of I P2, which simply replacesthe third constraint by the following con-

straint: xe 2 [0; 1] for all e 2 E. Let Z ?
2 denote the value of the optimal solution of LP 2, and 8S � V let L (S)

be the length of the optimal TSP tour for S and L C (S) be the length of the tour obtained by the Christo�des

algorithm [9]. Then obviously Z ?
2 � Z2 = L(V) � L C (V). And we know that L C (V) � 1:5L (V) = 1:5Z2.

Furthermore, Shmoys and Williamson in [34] proved:

Theorem 5. L C (V) � 1:5Z ?
2

Now, let V2 � V, de�ne r i = 2 if i 2 V2 and r i = 0 otherwise. Consider the following two LP Problems:

Problem LP3: Z3 =minimize
P

e2E cexe, subject to
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1.
P

e2 � ( i ) xe = r i , for all i 2 V,

2.
P

e2 � (S) xe � 2, for all S � V; S \ V2 6= ; 6= V2 n S,

3. xe 2 [0; 1], for all e 2 E

Problem LP4: Z4 =minimize
P

e2E cexe, subject to

1.
P

e2 � (S) xe � 2, for all S � V; S \ V2 6= ; 6= V2 n S,

2. 0 � xe, for all e 2 E

Let Z ?
3 be the optimal solution of LP3 and Z ?

4 be the optimal solution of LP4. It is shown in [18] that

Theorem 6. Z ?
3 = Z ?

4

Clearly LP3 is more constrained than LP2, so Z ?
3 � Z ?

2 . By theorems 5 and 6, we can easily get the

following inequalities:

L (V2) � L C (V2) � 1:5Z ?
3 = 1:5Z ?

4 (2)

Basedon theseauxiliary results, now we can prove the approximation bound for I PLP T Q . Let (y?; x?; Z ?
1 ) =

((y?
i )n

i =1 ; (x?
e)e2E ; Z ?

1 ) be the optimal solution to problem LPLT P Q . The randomized rounding processwill

get byi = 1 if y?
i �

1

�
and byi = 0 otherwise. Meanwhile, we de�ne bxe = �x ?

e. The trip obtained from the

solution after randomizedrounding passesthrough all the verticesin the set T1 whereT1 = f vi 2 V j byi = 1g.

Lemma 5. T1 contains at least one vertex for each category.

Proof. 8k 2 [1; m], let I k = f vi 2 V j ak i = 1g, we have jI k j � � . We also have, by the formulation of

LPLT P Q :

1 �
n +1X

i =1

ak i y?
i =

X

v i 2 I k

y?
i

So, there must exist at least oneindex j such that vj 2 I k and y?
j �

1

�
. Thus, byj = 1; vj 2 T1 and vj 2 I k .

If we set V2 = T1; r i = 2byi in LP3 and LP4, then by equation 2 we have

L(T1) � L C (T1) � 1:5Z ?
3 = 1:5Z ?

4 (3)

Notice that (bxe)e2E is feasibleto LP4. Condition 2 of LP4 is easyto check. Condition 1 is satis�ed, as

by the formulation of LPLT P Q and our randomized rounding process:

X

e2 � (S)

bxe = �
X

e2 � (S)

x?
e � � 2y?

i � � 2
1

�
= 2

Therefore, we have,

AP PLT P Q = L C (T1) � 1:5Z ?
4 � 1:5

P
e2E cebxe = 1:5�

P
e2E cex?

e = 1:5�Z ?
1 � 1:5�Z 1 = 1:5�O PTLT P Q
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