
Building Local Search Engines for
Big Heterogeneous Data

Cody Hansen, Feifei Li

The Motivation

• Typical search interface:
– Schema-specific query forms
– Rigid schema and formats required for the underlying data
– Each form requires a corresponding program
– Not very user friendly

• Many inputs?
• Domain values?

The Objective

• The objective: a search-engine-style
integration, search, ranking, and
recommendation system:

– must handle heterogeneous data sources

– it is desired to be schemaless and formatless

– easy to use and flexible search, ranking, and
recommendation interface

The Challenges

• How to achieve both efficiency and
effectiveness in scale?

– the big data challenge

– return useful and meaningful results, as well as
effective rankings and recommendations

• Must handle millions of records, or even
billions of them, in hundreds of gigabytes or
even terabytes

The Search Module
• A search-engine-style approach:

Basic Idea
• A keyword-centric approach

– Regardless of data types, each attribute is parsed into
a set of keywords

– Inverted lists to index these keywords (keyword to
record ids), with our own storage engine

– Another set of inverted lists to index q-grams to
keywords (for approximate keyword matching)

The Storage Engine: 3 binary files

Edit Distance Threshold

System Architecture
• Main modules: parser, merger (to handle big

data), flamingo builder, searcher

Searcher
• The searcher has the following main steps:

– Find approximate keywords
– Find RIDs
– Merge them
– Make Recommendations and Rankings

Merger

• MergeSkip algorithm designed for q-gram
merging.

• Basic idea is keep a pointer in each list.

• When you fail an ID, do a binary search for the
next number in each of the lists

10
10

Example of MergeSkip

1

3

5

10

10

15

5

7

13 15

Count threshold T≥ 4

minHeap
10

13 15

1

5

Jump

15 15

13 13

17 17

Other Features

• Also support
– Column specific search: column = keyword, or column =

“keyword1 keyword2 …”
– Exact search: exact = keyword (search anywhere), or

column == keyword (search on that column)
– Can combine them in anyway, e.g.,
cody title = “stdent florida” tallahssee education == state exact = hansen

cody, tallahssee: approximate search anywhere
stdent florida: approx search on title
state: exact search on education
hansen: exact search anywhere

Other Issues
• How to achieve effective ranking and

recommendation?
– TF-IDF style approach
– Associations
– Ontology

• How to build the indices and storage engine
extremely fast and scalable?
– Use MapReduce to do this in parallel

• Use a cluster of commodity machines for search
as well?

• How to handle streaming updates efficiently?

Associations

• Goal: Find the words that appear together at
least T times.

TID Keywords

1 1 3 4

2 2 3 5

3 1 2 3 5

4 2 5

Results

• Craiglist data: 1.7 billion records, 300GB.

• LinkedIn data: 12 million records, 10GB.

• A few Million unique keywords

• A single linux machine running ubuntu 12.9
and mysql server 5.1, with 12GB ram, 2TB
disk, and a single Intel ®CPU X3470@2.93GHz

Results (continued)

Results (continued)

• u: number of keywords searched
• k: number of recommendations made
• Query efficiency in second:

A live demo

http://datagroup.cs.utah.edu/colu
mbuscout.php

http://datagroup.cs.utah.edu/columbuscout.php
http://datagroup.cs.utah.edu/columbuscout.php
http://datagroup.cs.utah.edu/columbuscout.php

