Building Local Search Engines for
Big Heterogeneous Data

Cody Hansen, Feifei Li

The Motivation

Enter the following information.

Semester: | Select a Term E]

Class Number: Enter a class number
OR
a subject, catalog number and section.
Subject: Catalog Number: Section Number:
9 View Class Roll Download Class Roll (tab delimited text file)

View Contact List

| Continue J { Reset J

Typical search interface:
— Schema-specific query forms
— Rigid schema and formats required for the underlying data
— Each form requires a corresponding program

— Not very user friendly
* Many inputs?
 Domain values?

The Objective

* The objective: a search-engine-style
integration, search, ranking, and
recommendation system:

— must handle heterogeneous data sources
— itis desired to be schemaless and formatless

— easy to use and flexible search, ranking, and
recommendation interface

The Challenges

 How to achieve both efficiency and
effectiveness in scale?
— the big data challenge
— return useful and meaningful results, as well as
effective rankings and recommendations
 Must handle millions of records, or even
billions of them, in hundreds of gigabytes or
even terabytes

The Search Module

* A search-engine-style approach:
LinkedIn Search

12 Million FRecords
ShowPage: 1 2 3 4 5 6 7 8 9 10 MNumber of Records Matched: 275320

cody florida] Enter Exact Keywords Here

The keyword(s) coy cody florida matched 1 record(s)
The keyword(s) cody florida matched 107 record(s)
The keyword(s) coady florida matched 1 record(s)
The keyword(s) codd florida maiched 1 record(s)
The keyword(s) loria cory matched 1 record(s)

Education

Education

Basic Idea

* A keyword-centric approach

— Regardless of data types, each attribute is parsed into
a set of keywords

— Inverted lists to index these keywords (keyword to
record ids), with our own storage engine

— Another set of inverted lists to index g-grams to
keywords (for approximate keyword matching)

Data Strings

IP!' (1 — 9 T — 9 —> FEdit Dictance Threchnld
id Stl'ing_ c at t th he ey y 'k ka hy
1 cat 1 1 1 2 2 2 2 3 3 3
2 cathey 2 2 3 3 4 4 b
3 kathy > i > >
4 kat
5 5

cathy

System Architecture

 Main modules: parser, merger (to handle big
data), flamingo builder, searcher

Queries O
Record # Name Location
i < ---- D 1 John Florida
| /:\ ueries U
— ser -
v ! Returns ColumbuScout Reads '
I:\Iamin_qo
EUses- ----- :":_d.r_____ir__?r?r_LJ_sgg_; Reads Creates Multiple\i/
! : 1' Creates E _________ |
. \Uses U \:/Reads Al 3
RecordIDs M
RecordIDs | | | Offsets Keywords U

Searcher

 The searcher has the following main steps:
— Find approximate keywords
— Find RIDs
— Merge them
— Make Recommendations and Ra

nkings

cody orlandol

The keyword(s) cody orlando maiched 20 record(s)

The keyword(s) cordy orlando matched 1 record(s)

The keyword(s) cozy orlando matched 1 record(s)
The keyword(s) body orlando matched 3 record(s)
The keyword(s) cory erlando matched 19 record(s)

Merger

* MergeSkip algorithm designed for g-gram
merging.
e Basic idea is keep a pointer in each list.

* When you fail an ID, do a binary search for the
next number in each of the lists

Example of MergeSkip

1

minHeap
5 10
13 15
— 1 — 10 — *>5 —/*13 — 15

3 13 7

Jump 5 15 17
10
15

Count threshold T> 4

10

Other Features

e Also support

— Column specific search: column = keyword, or column =
“keyword1 keyword? ...”

— Exact search: exact = keyword (search anywhere), or
column == keyword (search on that column)

— Can combine them in anyway, e.g.,
cody title = “stdent florida” tallahssee education == state exact = hansen

cody, tallahssee: approximate search anywhere
stdent florida: approx search on title

state: exact search on education

hansen: exact search anywhere

Other Issues

How to achieve effective ranking and
recommendation?

— TF-IDF style approach
— Associations
— Ontology

How to build the indices and storage engine
extremely fast and scalable?

— Use MapReduce to do this in parallel

Use a cluster of commodity machines for search
as well?

How to handle streaming updates efficiently?

Associations

* Goal: Find the words that appear together at
least T times.

1 134
2 235
3 1235
4 25

Results

Craiglist data: 1.7 billion records, 300GB.
LinkedIn data: 12 million records, 10GB.
A few Million unique keywords

A single linux machine running ubuntu 12.9
and mysql server 5.1, with 12GB ram, 2TB
disk, and a single Intel ®CPU X3470@2.93GHz

Results (continued)

= CRAIGSLIST DATA

3001

N
o)
=)

1501

me (minutes)
N
-
(=)

o r— 100'

50

10 30 50 100

70
|D| as % of full Craigslist

Results (continued)

* u: number of keywords searched
* k: number of recommendations made
* Query efficiency in second:

Full Craigslist Full LinkedIn

U] 3 I 3

E =200 0.0286 0.0669 0.0157 0.0408

k= |D| 0.0353 0.0889 0.0506 0.1359

A live demo

http://datagroup.cs.utah.edu/colu
mbuscout.php

http://datagroup.cs.utah.edu/columbuscout.php
http://datagroup.cs.utah.edu/columbuscout.php
http://datagroup.cs.utah.edu/columbuscout.php

