CS6931 Database Seminar

Lecture 7: Set Operations on Massive Data (Continued)

Membership Testing (Bloom Filter)

Bloom Filter

- Problem: membership testing
- Does item x from an universe [U] belong to a set S ?
- Assumption: the great majority of items tested will not belong to the given set
- Data structure should be:
-Fast (faster than searching through S).
-Small (smaller than explicit representation).
- The "price": allow some probability of error
-Allow false positive errors
-Don't allow false negative errors

Sample Application: Distributed Web Caches

- Summary Cache: [Fan, Cao, Almeida, \& Broder]

If local caches know each other's content...
...try local cache before going out to Web

- The idea: each cache keeps a summary of the content of each participatin cache
Store each summary in a Bloom Filter

Why Bloom Filters?

- Size is very economical
- Efficient query time
- Percentage of false positives is $1 \%-2 \%$ for 8 bits per entry
- False positives are possible
- Penalty is a wasted cache query. Small cost.
- No false negatives
- Never miss a cache hit. Big potential gain.

Bloom Filters

Start with an m bit array, filled with 0s.

B| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hash each item x_{j} in $S k$ times. If $H_{i}\left(x_{j}\right)=a$, set $B[a]=1$.

B| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

To check if y is in S, check B at $H_{i}(y)$. All k values must be 1 .

B| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible to have a false positive; all k values are 1 , but y is not in S.

0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	0

Bloom Filter

Bloom Errors

Computational Factors

- Size m / n : bits per item.
$-|\mathrm{U}|=\mathrm{n}$: Number of elements to encode.
$-\mathrm{h}_{\mathrm{i}}: \mathrm{U} \rightarrow[1 . . \mathrm{m}]$: Maintain a Bit Vector V of size m
- Time k : number of hash functions.
- Use k hash functions $\left(\mathrm{h}_{1} . . \mathrm{h}_{\mathrm{k}}\right)$
- Error f : false positive probability.

Error Estimation

- Assumption: Hash functions are perfectly random
- Probability of a bit being 0 after hashing all elements:

$$
(1-1 / m)^{k n} \approx e^{-k n / m}=e^{-\gamma}, \gamma=\frac{n k}{m}
$$

- Let $\mathrm{p}=\mathrm{e}^{-\mathrm{kn} / \mathrm{m}}$, probability of a false positive is:

$$
f=\left(1-\left(1-\frac{1}{m}\right)^{k n}\right)^{k} \approx\left(1-e^{-k n / m}\right)^{k}=(1-p)^{k}
$$

- Assuming we are given m and n, the optimal k is:

$$
\begin{array}{ll}
f=\exp \left(k \ln \left(1-e^{-k n / m}\right)\right) & \frac{d g}{d k}=0 \Rightarrow k_{\min }=(\ln 2)\left(\frac{m}{n}\right) \\
g=k \ln \left(1-e^{-k n / m}\right) & f g \\
\frac{d g}{d k}=\ln \left(1-e^{-k n / m}\right)+\frac{k n}{m} \frac{e^{-k n / m}}{1-e^{-k n / m}} & f\left(k_{\min }\right)=(1 / 2)^{k}=(0.6185)^{m / n}
\end{array}
$$

Example

Bloom Filter Tradeoffs

- Three factors: m, k and n .
- Normally, n and m are given, and we select k .
-More hash functions yields more chances to find a 0 bit for elements not in S
-Fewer hash functions increases the fraction of the bits that are 0 .
- Not surprisingly, when k is optimal, the "hit ratio" (ratio of bits flipped in the array) is 0.5 .

Bloom Filters and Deletions

- Cache contents change
- Items both inserted and deleted.
- Insertions are easy - add bits to BF
- Can Bloom filters handle deletions?
-Use Counting Bloom Filters to track insertions/deletions

Handling Deletions

- Bloom filters can handle insertions, but not deletions.
- If deleting x_{i} means resetting 1 s to 0 s , then deleting x_{i} will "delete" x_{j}.

B| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Counting Bloom Filters

Start with an m bit array, filled with 0 s.

B| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hash each item x_{j} in $S k$ times. If $H_{i}\left(x_{j}\right)=a$, add 1 to $B[a]$.

B| 0 | 3 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

To delete x_{j} decrement the corresponding counters.

B| 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Can obtain a corresponding Bloom filter by reducing to $0 / 1$.

