CS6931 Database Seminar

Lecture 7: Set Operations on Massive Data (Continued)

Membership Testing (Bloom Filter)

Bloom Filter

- Problem: membership testing
 - Does item x from an universe [U] belong to a set S?
- Assumption: the great majority of items tested will not belong to the given set
- Data structure should be:
 - -Fast (faster than searching through S).
 - -Small (smaller than explicit representation).
- The "price": allow some probability of error
 - -Allow false positive errors
 - -Don't allow false negative errors

• Summary Cache: [Fan, Cao, Almeida, & Broder]

If local caches know each other's content...

...try local cache before going out to Web

- The idea: each cache keeps a summary of the content of each participating cache
- Store each summary in a Bloom Filter

Why Bloom Filters?

- Size is very economical
- Efficient query time
- Percentage of false positives is 1%-2% for 8 bits per entry
- False positives are possible
 - Penalty is a wasted cache query. Small cost.
- No false negatives
 - Never miss a cache hit. Big potential gain.

						ł	Blo	om	Fil	ter	S					
			Sta	art w	vith	an m	bit	arra	y, fil	lled	with	1 Os.				
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Has	sh ea	ach i	tem	x_j ir	1 <i>S k</i>	tim	es.	If <i>H</i>	$x_j(x_j)$	= a,	set	B [a]	= 1	•	
3	0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	0
T	o ch	leck			S, C		k <i>B</i> :	_	_	All	<i>k</i> va	alues		st be	e 1.	
5	0	1	0	0	1	0	1	0	0	1	1	1	0	1	1	0
Pos	sible	e to ł	nave	a fa	lse j	posit	tive;	all	<i>k</i> va	lues	are	1, b	ut y	is n	ot in	<i>S</i> .

Computational Factors

- Size m/n : bits per item.
 - -|U| = n: Number of elements to encode.
 - $-h_i: U \rightarrow [1..m]$: Maintain a Bit Vector V of size m
- Time *k* : number of hash functions.
 - Use k hash functions $(h_1..h_k)$
- Error *f* : false positive probability.

Error Estimation

- Assumption: Hash functions are perfectly random
- Probability of a bit being 0 after hashing all elements: $(1-1/m)^{kn} \approx e^{-kn/m} = e^{-\gamma}, \gamma = \frac{nk}{m}$
- Let $p=e^{-kn/m}$, probability of a false positive is:

$$f = \left(1 - \left(1 - \frac{1}{m}\right)^{k_n}\right)^k \approx \left(1 - e^{-kn/m}\right)^k = (1 - p)^k$$

• Assuming we are given m and n, the optimal k is:

$$f = \exp\left(k\ln\left(1 - e^{-kn/m}\right)\right) \qquad \qquad \frac{dg}{dk} = 0 \Rightarrow k_{\min} = (\ln 2)\left(\frac{m}{n}\right) \frac{dg}{dk} = \ln\left(1 - e^{-kn/m}\right) + \frac{kn}{m}\frac{e^{-kn/m}}{1 - e^{-kn/m}} \qquad f(k_{\min}) = (1/2)^k = (0.6185)^{m/n}$$

Bloom Filter Tradeoffs

- Three factors: m,k and n.
- Normally, n and m are given, and we select k.
 - -More hash functions yields more chances to find a 0 bit for elements not in S
 - -Fewer hash functions increases the fraction of the bits that are 0.
- Not surprisingly, when k is optimal, the "hit ratio" (ratio of bits flipped in the array) is 0.5.

Bloom Filters and Deletions

- Cache contents change
 - Items both inserted and deleted.
- Insertions are easy add bits to BF
- Can Bloom filters handle deletions?
 –Use Counting Bloom Filters to track insertions/deletions

Handling Deletions

- Bloom filters can handle insertions, but not deletions.
- If deleting x_i means resetting 1s to 0s, then deleting x_i will "delete" x_j .

Counting Bloom Filters Start with an *m* bit array, filled with 0s. В () () () () () () () () () () Hash each item x_i in *S* k times. If $H_i(x_i) = a$, add 1 to B[a]. В 3 0 2 3 2 () () 0 2 () () To delete x_i decrement the corresponding counters. В 3 2 () () Can obtain a corresponding Bloom filter by reducing to 0/1. 0 () () () () () () I