
 

Lecture 7: Set Operations on Massive Data (Continued) 

CS6931 Database Seminar 



 

  

 

 Membership Testing (Bloom Filter) 



Bloom Filter 

• Problem: membership testing 

– Does item x from an universe [U] belong to a set S ? 

• Assumption: the great majority of items tested will not belong to the 
given set 

• Data structure should be: 

–Fast (faster than searching through S). 

–Small (smaller than explicit representation). 
• The “price”: allow some probability of error 

–Allow false positive errors 

–Don’t allow false negative errors 
 



Sample Application: 

Distributed Web Caches 

Web Cache 1 Web Cache 2 Web Cache 3 

Web Cache 6 Web Cache 5 Web Cache 4 

• Summary Cache: [Fan, Cao, Almeida, & Broder] 

  If local caches know each other’s content... 

           …try local cache before going out to Web 

• The idea: each cache keeps a summary of the content of each participating 
cache 

• Store each summary in a Bloom Filter 

 

 

 



Why Bloom Filters? 

• Size is very economical  

• Efficient query time 

• Percentage of false positives is 1%-2% for 8 bits per entry 

• False positives are possible 

– Penalty is a wasted cache query. Small cost. 

• No false negatives 

– Never miss a cache hit. Big potential gain. 



Bloom Filters 

Start with an m bit array, filled with 0s. 

Hash each item xj in S k times.  If Hi(xj) = a, set B[a] = 1. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

To check if y is in S, check B at Hi(y).  All k values must be 1. 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

Possible to have a false positive;  all k values are 1, but y is not in S. 



Bloom Filter 

0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 

x 

h1(x) h2(x) hk(x) 

V0 Vm-1 

h3(x) 



Bloom Errors 

0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 

h1(x) h2(x) hk(x) 

V0 Vm-1 

h3(x) 

a b c d 

x didn’t appear, yet its bits are already set 



Computational Factors 

• Size m/n : bits per item. 

– |U| = n: Number of elements to encode. 

– hi: U[1..m]  : Maintain a Bit Vector V of size m 

• Time k : number of hash functions. 

– Use k hash functions (h1..hk) 

• Error f : false positive probability. 



Error Estimation 

• Assumption: Hash functions are perfectly random 

• Probability of a bit being 0 after hashing all elements: 

 

• Let p=e-kn/m, probability of a false positive is: 

 

 

• Assuming we are given m and n, the optimal k is: 

 

 

 
m

nk
eem mknkn

  γ,/11 γ/

   k
kmkn

k
kn

pe
m

f 





















  11

1
11 /

  
 

 
mkn

mkn
mkn

mkn

mkn

e

e

m

kn
e

dk

dg

ekg

ekf

/

/
/

/

/

1
1ln

1ln

1lnexp

















nmkkf

n

m
k

dk

dg

/

min

min

)6185.0()2/1()(

)2(ln0















Example 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

F
a

ls
e
 p

o
si

ti
v

e
 r

a
te m/n = 8 

Opt k = 8 ln 2 = 5.45... 



Bloom Filter Tradeoffs 

• Three factors: m,k and n. 

• Normally, n and m are given, and we select k. 

–More hash functions yields more chances to 

find a 0 bit for elements not in S 

–Fewer hash functions increases the fraction 

of the bits that are 0. 
• Not surprisingly, when k is optimal, the “hit ratio” (ratio of bits 

flipped in the array) is 0.5 . 



Bloom Filters and Deletions 

• Cache contents change 
– Items both inserted and deleted. 

• Insertions are easy – add bits to BF 

• Can Bloom filters handle deletions? 

–Use Counting Bloom Filters to track 

insertions/deletions 



Handling Deletions 

• Bloom filters can handle insertions, but not deletions. 

 

• If deleting xi means resetting 1s to 0s, then deleting xi will “delete” 

xj.   

 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

xi    xj 



Counting Bloom Filters 

Start with an m bit array, filled with 0s. 

Hash each item xj in S k times.  If Hi(xj) = a, add 1 to B[a]. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 

0 3 0 0 1 0 2 0 0 3 2 1 0 2 1 0 B 

To delete xj decrement the corresponding counters. 

0 2 0 0 0 0 2 0 0 3 2 1 0 1 1 0 B 

Can obtain a corresponding Bloom filter by reducing to 0/1. 

0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 B 


