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Set Resemblance  

and  

MinWise Hashing/Independent Permutation 



Basics 

• Consider two sets S1, S2 ⊆ U = {0, 1, 2, ...,D − 1} (e.g., D = 264) 

 

 

 

 

 

• f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|. 

• The resemblance R is a popular measure of set similarity 



Basics and Applications 

• A set S ⊆ U = {0, 1, ...,D . 1} can be viewed as 0/1 vector in D 

dimensions. 

• Application—Shingling: Each document (Web page) can be viewed 

as a set of w-shingles. For example, after parsing, a sentence 

―welcome to school of computing‖ becomes 

– w = 1: {welcome, to, school, of, computing} 

– w = 2: {welcome to, to school, school of, of computing} 

– W = 3: {welcome to school, to school of, school of computing} 

 

Shingling generates extremely high dimensional vectors, e.g., D = 

(105)w. 



Near Duplicate Detection 

• Each document (Web page) is parsed into a set of w-shingles. 

Suppose there are roughly 1010 English Web pages, i.e., N = 1010 

sets. 

 

• Q: Can we efficiently find the duplicate documents (e.g., paper 

plagiarism), fast and using only affordable memory space? 

 

• A: If Resemblance is the similarity measure, then minwise hashing 

may provide a highly practical algorithm for duplicate detection. 



MinWise Hashing/Independent Permutation 

• Suppose a random permutation π is performed on U, i.e., 

– π: U  U, where U={0,1,…., D-1}. 

– A simple argument can show that, where S1 ⊆ U and S2 ⊆ U  

Pr (min(π(S1)) = min(π(S2)))=
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
= 𝑅 

Why? 



To Reduce Variance 

• After k independent permutations, π1, π2, ..., πk, one can estimate R 

without bias, as a binomial: 

– 𝑅 =
1

𝑘
 1*min π𝑗 𝑆1 =min π𝑗 𝑆2 +𝑘

𝑗=1  

 why? 

– Var(𝑅 )=
1

𝑘
 𝑅(1 − 𝑅)  

 why? 

• Because a = 
𝑅

1+𝑅
(f1 + f2), we can estimate a from the 

estimated R! 



How to implement minwise independent 

permuation and other set operations 
 

• There is a stoc 98 paper 

• Or in practice, you can simulate minwise independent permuation 

using k-wise indepdent hash function: usually works pretty well. 

• MinWise synopsis: 

– S(A)={min(π1(A), π2(A), ..., πk(A)} 

– How to compute S(A ∪ B)? 

– Given S(A), S(B), and |A|, |B|, how to estimate |A ∪ B| and |A ∩ 

B| ? 



Storage Problem of Minwise Hashing 

• Each hashed value, e.g., min(π(S1)), is usually stored using 64 bits 

• For typical applications, k=50 or 100 is required (hashed values) 

• The total storage can be prohibitive: 

– Nx64x100=8TB, if N=1010! 

• Storage problems also cause computational problems, of course.  

 



b-Bit MinWise Hashing 

• Basic idea: Only store the lowest b-bits of each hashed value, for 

small b. 

• Intuition why this works: 

– When two sets are identical, then their lowest b-bits of the 

hashed values are of course also equal. 

– When two sets are similar, then their lowest b-bits of the hashed 

values ―should be‖ also similar (True?). 

– Therefore, hopefully, we do not need many bits to obtain useful 

information, especially considering real applications often care 

about pairs with reasonably large resemblance values (e.g., 0.5). 

• For more details on why this works, refer to the resource on the 

web. 
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Introduction 

• Estimating # Distinct Values (DV) crucial for: 

– Data integration & cleaning 
* E.g. schema discovery, duplicate detection 

– Query optimization 

– Network monitoring 

– Materialized view selection for datacubes 

 

• Exact DV computation is impractical 

– Sort/scan/count or hash table 

– Problem: bad scalability 

 

• Approximate DV ―synopses‖  

– 25 year old literature 

– Hashing-based techniques 
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Motivation: A Synopsis Warehouse 

Full-Scale 

Warehouse Of 

 Data Partitions 

Synopsis 

Synopsis 

Synopsis 

S1,1 S1,2 Sn,m Warehouse 

of Synopses 
combine 

S*,* S1-2,3-7 etc 

• Goal: discover partition characteristics & relationships to other partitions 

– Keys, functional dependencies, similarity metrics (Jaccard) 

– Similar to Bellman [DJMS02] 

• Accuracy challenge: small synopses sizes, many distinct values 
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Outline 

• Background on KMV synopsis 
 

• An unbiased low-variance DV estimator 

– Optimality 

– Asymptotic error analysis for synopsis sizing 

 

• Compound Partitions 

– Union, intersection, set difference 

– Multiset Difference: AKMV synopses 

– Deletions 

 

• Empirical Evaluation 
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K-Min Value (KMV) Synopsis 

• Hashing = dropping DVs uniformly on [0,1] 

• KMV synopsis:   

• Leads naturally to basic estimator [BJK+02] 

– Basic estimator:  

– All classic estimators approximate the basic estimator 

• Expected construction cost:  

• Space: 
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Intuition 
• Look at spacings 

– Example with k = 4 and D = 7: 

 

 

 

 

– E[V]  1 / D  so that  D   1 / E[V] 

– Estimate D as 1 / Avg(V1,…,Vk) 

– I.e., as k / Sum(V1,…,Vk) 

– I.e., as k / u(k) 

– Upward bias (Jensen’s inequality) so change k to k-1 

   if X is a random variable and φ is a convex function, then  

  φ(E(X)) ≤ E(φ(X)) (the secant line of a convex function 

lies above the graph of the function) 

–   

 

x x x x x x x

V1 V2 V3 V4

0 1
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New Synopses & Estimators 
• Better estimators for classic KMV synopses 

– Better accuracy: unbiased, low mean-square error 

– Exact error bounds (in paper) 

– Asymptotic error bounds for sizing the synopses 

• Augmented KMV synopsis (AKMV) 

– Permits DV estimates for compound partitions 

– Can handle deletions and incremental updates 

 

 

A  op B  

A 

B 

SA 

SB 

Synopsis 

Synopsis 

SA op B  
Combine 
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Unbiased DV Estimator from KMV 

Synopsis 
• Unbiased Estimator [Cohen97]: 

– Exact error analysis based on theory of order statistics 

– Asymptotically optimal as k becomes large (MLE theory) 

 

• Analysis with many DVs 

– Theorem:  

 

– Proof:  

* Show that U(i)-U(i-1) approx exponential for large D 

* Then use [Cohen97]  

 

• Use above formula to size synopses a priori 
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Outline 

• Background on KMV synopsis 
 

• An unbiased low-variance DV estimator 

– Optimality 

– Asymptotic error analysis for synopsis sizing 

 

• Compound Partitions 

– Union, intersection, set difference 

– Multiset Difference: AKMV synopses 

– Deletions 

 

• Empirical Evaluation 
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(Multiset) Union of Partitions 

0 
X X X X 

k-min 

0 
X X X X 

k-min 

0 
X X X X 
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X X X X 

k-min 

U (k) 

L 

LA LB 

 Combine KMV synopses: L=LALB 

 Theorem: L is a KMV synopsis of AB 

 Can use previous unbiased estimator: 
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 L=LALB  as with union (contains k elements) 
 Note: L corresponds to a uniform random sample of DVs in AB 

 

 K = # values in L that are also in D(AB) 
 Theorem: Can compute from LA and LB alone 

 

 K/k estimates Jaccard distance:  

 

                                estimates  

 

 Unbiased estimator of #DVs in the intersection: 

 

 
 See paper for variance of estimator 

 

 Can extend to general compound partitions from 
ordinary set operations 

 

(Multiset) Intersection of Partitions 
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Multiset Differences: AKMV Synopsis 
• Augment KMV synopsis with multiplicity counters L+=(L,c) 

– Space:                                                   M=max multiplicity 

– Proceed almost exactly as before i.e. L+
(E/F)=(LELF,(cE-cF)+) 

 

– Unbiased DV estimator:                                   
 
 
Kg is the #positive counters 

 

• Closure property: 

 

 

 

 

 

 

 

• Can also handle deletions 
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