CS6931 Database Seminar

Lecture 5: Streaming Model (continued)

The Distinct Counting Problem

FM Sketch

- ,Estimates number of distinct inputs (count distinct)
- „Uses hash function mapping input items to i with prob $2^{\wedge}\{-\mathrm{i}\}$
- i.e. $\operatorname{Pr}[\mathrm{h}(\mathrm{x})=1]=1 / 2, \operatorname{Pr}[\mathrm{~h}(\mathrm{x})=2]=1 / 4, \operatorname{Pr}[\mathrm{~h}(\mathrm{x})=3]=1 / 8 \ldots$
- Easy to construct h() from a uniform hash function by counting trailing zeros
- ,Maintain FM Sketch = bitmap array of $\mathrm{L}=\log \mathrm{U}$ bits
- Initialize bitmap to all 0 s
- For each incoming value x, set $\operatorname{FM}[h(x)]=1$

FM Sketch

- If d distinct values, expect $\mathrm{d} / 2$ map to $\mathrm{FM}[1]$, $\mathrm{d} / 4$ to $\mathrm{FM}[2] \ldots$

- Let $\mathrm{R}=$ position of rightmost zero in FM , indicator of $\log (\mathrm{d})$
- Basic estimate $\mathrm{d}=\mathrm{c} 2 \mathrm{R}$ for scaling constant $\mathrm{c} \approx 1.3$
- Average many copies (different hash fns) improves accuracy
- With $\mathrm{O}(1 / \varepsilon 2 \log 1 / \delta)$ copies, get (ε, δ) approximation
-10 copies gets $\approx 30 \%$ error, 100 copies $<10 \%$ error

COUNT Sketches

- Problem: Estimate the number of distinct item IDs in a data set with only one pass.
- Constraints:
- Small space relative to stream size.
- Small per item processing overhead.
- Union operator on sketch results.
- Exact COUNT is impossible without linear space.
- First approximate COUNT sketch in [FM'85].
$-\mathrm{O}(\log \mathrm{N})$ space, $\mathrm{O}(1)$ processing time per item.

Counting Paintballs

- Imagine the following scenario:
- A bag of n paintballs is emptied at the top of a long stair-case.
- At each step, each paintball either bursts and marks the step, or bounces to the next step. 50/50 chance either way.

Looking only at the pattern of marked steps, what was n ?

Counting Paintballs (cont)

- What does the distribution of paintball bursts look like?
- The number of bursts at each step follows a binomial distribution.
- The expected number of bursts drops geometrically.
- Few bursts after $\log _{2} n$ steps

Counting Paintballs (cont)

- Many different estimator ideas [FM'85,AMS'96,GGR'03,DF'03,...]
- Example: Let pos denote the position of the highest unmarked stair,

$$
\left.\begin{array}{c}
E(p o s) \approx \log _{2}(0.775351 n) \\
\sigma^{2}(p o s)
\end{array} \approx_{1.12127}{ }^{2}\right)
$$

- Standard variance reduction methods apply
- Either O($\log n)$ or $O(\log \log n)$ space

Back to COUNT Sketches

- The COUNT sketches of
[FM'85] are equivalent to the paintball process.
- Start with a bit-vector of all zeros.
- For each item,
* Use its ID and a hash function for coin flips.
* Pick a bit-vector entry.
* Set that bit to one.
- These sketches are duplicate-
 insensitive:
$\forall A, B(\operatorname{Sketch}(A) \not \perp \operatorname{Sketch}(B))=\operatorname{Sketch}(A \cup B)$

The Sampling Problem

Sampling From a Stream

000000000000000000 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Fundamental prob: sample m items uniformly from stream
- Useful: approximate costly computation on small sample
- Challenge: don't know how long stream is
- So when/how often to sample?
- Two solutions, apply to different situations:
- Reservoir sampling (dates from 1980s?)
- Min-wise sampling (dates from 1990s?)

Reservoir Sampling

- Sample first m items
- Choose to sample the i 'th item ($\mathrm{i}>\mathrm{m}$) with probability m / i
- If sampled, randomly replace a previously sampled item
- Optimization: when i gets large, compute which item will be sampled next, skip over intervening items. [Vitter 85]

Reservoir Sampling

- Analyze simple case: sample size $m=1$
- Probability i'th item is the sample from stream length n :
- Prob. i is sampled on arrival \times prob. i survives to end

$$
\begin{aligned}
& \frac{1}{X} \times \frac{i}{i-1} \times \frac{i-1}{i+2} \cdots \frac{n-2}{n-1} \times \frac{n-1}{n} \\
= & 1 / n
\end{aligned}
$$

- Case for $m>1$ is similar, easy to show uniform probability
- Drawbacks of reservoir sampling: hard to parallelize

Min-wise Sampling

- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.'04]

- Each item has same chance of least tag, so uniform
- Can run on multiple streams separately, then merge

