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  The Distinct Counting Problem 



FM Sketch 

• „ Estimates number of distinct inputs (count distinct) 

• „ Uses hash function mapping input items to i with prob 2^{-i} 

 – i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 … 

 – Easy to construct h() from a uniform hash function by  

    counting trailing zeros   

• „ Maintain FM Sketch =  bitmap array of L = log U bits  

 – Initialize bitmap to all 0s 

 – For each incoming value x, set FM[h(x)] = 1 



FM Sketch 

• If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]… 

 

 

 

 

 

 

 

 

• With O(1/ε2 log 1/δ) copies, get (ε,δ) approximation 

    – 10 copies gets ≈ 30% error, 100 copies < 10% error 

 

– Let R = position of rightmost zero in FM, indicator of log(d) 

– Basic estimate d = c2R for scaling constant c ≈ 1.3 

– Average many copies (different hash fns) improves accuracy 

 



COUNT Sketches 

• Problem: Estimate the number of distinct item IDs in a data 

set with only one pass. 

• Constraints:  

– Small space relative to stream size. 

– Small per item processing overhead. 

– Union operator on sketch results. 

 

• Exact COUNT is impossible without linear space. 

• First approximate COUNT sketch in [FM’85]. 

– O(log N) space, O(1) processing time per item. 



Counting Paintballs 

• Imagine the following 

scenario: 

– A bag of n paintballs is 

emptied at the top of a long 

stair-case. 

– At each step, each paintball 

either bursts and marks the 

step, or bounces to the next 

step. 50/50 chance either 

way. 

Looking only at the pattern of 
marked steps, what was n? 



Counting Paintballs (cont) 

• What does the distribution 

of paintball bursts look 

like? 

– The number of bursts at 

each step follows a binomial 

distribution. 

– The expected number of 

bursts drops geometrically. 

– Few bursts after log2 n steps 
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Counting Paintballs (cont) 

• Many different estimator ideas [FM'85,AMS'96,GGR'03,DF'03,...] 

• Example: Let pos denote the position of the highest unmarked stair, 

E(pos) ≈ log2(0.775351 n) 

2(pos) ≈ 1.12127 

• Standard variance reduction methods apply 

• Either O(log n) or O(log log n) space 



Back to COUNT Sketches 

• The COUNT sketches of 

[FM'85] are equivalent to the 

paintball process. 

– Start with a bit-vector of all 

zeros. 

– For each item,  

* Use its ID and a hash function 

for coin flips. 

* Pick a bit-vector entry. 

* Set that bit to one. 

• These sketches are duplicate-

insensitive: 

1 0 0 0 0 {x} 

0 0 1 0 0 {y} 

1 0 1 0 0 {x,y} 

"A,B  (Sketch(A)  Sketch(B)) = Sketch(A  B) 



 

 

 

  The Sampling Problem 



Sampling From a Stream 

 

• Fundamental prob: sample m items uniformly from stream 

     – Useful: approximate costly computation on small sample 

• Challenge: don’t know how long stream is 

    – So when/how often to sample? 

• Two solutions, apply to different situations: 

    – Reservoir sampling (dates from 1980s?) 

    – Min-wise sampling (dates from 1990s?) 



Reservoir Sampling 

• Sample first m items 

• Choose to sample the i’th item (i>m) with probability m/i 

• If sampled, randomly replace a previously sampled item 

• Optimization: when i gets large, compute which item will 

    be sampled next, skip over intervening items. [Vitter 85] 



Reservoir Sampling 

• Analyze simple case: sample size m = 1 

• Probability i’th item is the sample from stream length n: 

    – Prob. i is sampled on arrival × prob. i survives to end 

 

 

 

 

 

• Case for m > 1 is similar, easy to show uniform probability 

• Drawbacks of reservoir sampling: hard to parallelize 



Min-wise Sampling 

• For each item, pick a random fraction between 0 and 1 

• Store item(s) with the smallest random tag [Nath et al.’04] 

 

 

 

 

 

• Each item has same chance of least tag, so uniform 

• Can run on multiple streams separately, then merge 


