

Lecture 5: Streaming Model (continued)

CS6931 Database Seminar

 The Distinct Counting Problem

FM Sketch

• „ Estimates number of distinct inputs (count distinct)

• „ Uses hash function mapping input items to i with prob 2^{-i}

 – i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …

 – Easy to construct h() from a uniform hash function by

 counting trailing zeros

• „ Maintain FM Sketch = bitmap array of L = log U bits

 – Initialize bitmap to all 0s

 – For each incoming value x, set FM[h(x)] = 1

FM Sketch

• If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

• With O(1/ε2 log 1/δ) copies, get (ε,δ) approximation

 – 10 copies gets ≈ 30% error, 100 copies < 10% error

– Let R = position of rightmost zero in FM, indicator of log(d)

– Basic estimate d = c2R for scaling constant c ≈ 1.3

– Average many copies (different hash fns) improves accuracy

COUNT Sketches

• Problem: Estimate the number of distinct item IDs in a data

set with only one pass.

• Constraints:

– Small space relative to stream size.

– Small per item processing overhead.

– Union operator on sketch results.

• Exact COUNT is impossible without linear space.

• First approximate COUNT sketch in [FM’85].

– O(log N) space, O(1) processing time per item.

Counting Paintballs

• Imagine the following

scenario:

– A bag of n paintballs is

emptied at the top of a long

stair-case.

– At each step, each paintball

either bursts and marks the

step, or bounces to the next

step. 50/50 chance either

way.

Looking only at the pattern of
marked steps, what was n?

Counting Paintballs (cont)

• What does the distribution

of paintball bursts look

like?

– The number of bursts at

each step follows a binomial

distribution.

– The expected number of

bursts drops geometrically.

– Few bursts after log2 n steps

1st

2nd

S th

B(n,1/2)

B(n,1/2 S)

B(n,1/4)

B(n,1/2 S)

Counting Paintballs (cont)

• Many different estimator ideas [FM'85,AMS'96,GGR'03,DF'03,...]

• Example: Let pos denote the position of the highest unmarked stair,

E(pos) ≈ log2(0.775351 n)

2(pos) ≈ 1.12127

• Standard variance reduction methods apply

• Either O(log n) or O(log log n) space

Back to COUNT Sketches

• The COUNT sketches of

[FM'85] are equivalent to the

paintball process.

– Start with a bit-vector of all

zeros.

– For each item,

* Use its ID and a hash function

for coin flips.

* Pick a bit-vector entry.

* Set that bit to one.

• These sketches are duplicate-

insensitive:

1 0 0 0 0 {x}

0 0 1 0 0 {y}

1 0 1 0 0 {x,y}

"A,B (Sketch(A) Sketch(B)) = Sketch(A B)

 The Sampling Problem

Sampling From a Stream

• Fundamental prob: sample m items uniformly from stream

 – Useful: approximate costly computation on small sample

• Challenge: don’t know how long stream is

 – So when/how often to sample?

• Two solutions, apply to different situations:

 – Reservoir sampling (dates from 1980s?)

 – Min-wise sampling (dates from 1990s?)

Reservoir Sampling

• Sample first m items

• Choose to sample the i’th item (i>m) with probability m/i

• If sampled, randomly replace a previously sampled item

• Optimization: when i gets large, compute which item will

 be sampled next, skip over intervening items. [Vitter 85]

Reservoir Sampling

• Analyze simple case: sample size m = 1

• Probability i’th item is the sample from stream length n:

 – Prob. i is sampled on arrival × prob. i survives to end

• Case for m > 1 is similar, easy to show uniform probability

• Drawbacks of reservoir sampling: hard to parallelize

Min-wise Sampling

• For each item, pick a random fraction between 0 and 1

• Store item(s) with the smallest random tag [Nath et al.’04]

• Each item has same chance of least tag, so uniform

• Can run on multiple streams separately, then merge

