
 

Lecture 4: Streaming Model 

CS6931 Database Seminar 



Problem One: Missing Card 

• I take one from a deck of 52 cards, and pass the rest to you.  Suppose 

you only have a (very basic) calculator and bad memory, how can 

you find out which card is missing with just one pass over the 51 

cards? 

 

• What if there are two missing cards?  
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A data stream algorithm … 

• Makes one pass over the input data 

• Uses a small amount of memory (much smaller than the input 

data) 

• Computes something 
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Why do we need streaming algorithms 

• Often get to see the data once 

• Don’t want to store the entire data 

• Data stored on disk, sequential scans are much faster 

 

• Data stream algorithms have been a very active research area for the 

past 15 years 

• Problems considered today 

– Missing card 

– Majority 

– Heavy hitters 

– Self-join size 
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Streaming Model 

• We model data streams as sequences of simple tuples 

• Complexity arises from massive length of streams 

• Arrivals only streams: 

 – Example: (x, 3), (y, 2), (x, 2) encodes 

    the arrival of 3 copies of item x, 

    2 copies of y, then 2 copies of x. 

 – Could represent eg. packets on a network; power usage 

• Arrivals and departures: 

 – Example: (x, 3), (y,2), (x, -2) encodes 

    final state of (x, 1), (y, 2). 

  – Can represent fluctuating quantities, or measure 

   differences between two distributions 



Technique One: Tricks 
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Problem two: Majority 

• Given a sequence of items, find the majority if there is one 

 

• A A B C D B A A B B A A A A A A C C C D A B A A A 

• Answer: A 

 

• Trivial if we have O(n) memory 

• Can you do it with O(1) memory and two passes? 

– First pass: find the possible candidate 

– Second pass: compute its frequency and verify that it is > n/2 

• How about one pass? 

– Unfortunately, no 
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Problem three: Heavy hitters 

• Problem: find all items with counts > φn, for some 0< φ<1 

• Relaxation: 

– If an item has count > φ n, it must be reported, together with its 

estimated count with (absolute) error < εn 

– If an item has count < (φ − ε) n, it cannot be reported 

– For items in between, don’t care 

• In fact, we will estimate all counts with at most εn error 

• Applications 

– Frequent IP addresses 

– Data mining 
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Technique Two: Counter-Based Algorithms 
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The algorithm [Metwally, Agrawal, Abbadi, 2006] 

• Input parameters: number of counters m, stream S 

• Algorithm: 

for each element e in S { 

  if e is monitored { 

    find counter of e, counteri; 

    counteri++; 

  } else { 

    find the element with least frequency, em, denote its frequency min; 

    replace em with e; 

    assign counter for e with min+1; 

  } 

} 
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Properties of the Algorithm 

• Actual count of a monitored item ≤ counter 

• Actual count of a monitored item ≥ counter – min 

• Actual count of an item not monitored ≤ min 

– Proof by induction 

• The sum of the counters maintained is n 

– Why? 

• So min <= n/m  

• If we set m = 1/ε, it’s sufficient to solve the heavy hitter problem 

– Why? 

– So the heavy hitter problem can be solved in O(1/ε) space 
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How about deletions? 

• Any deterministic algorithm needs O(1/ε^2) space 

– Why? 

– In fact, Las Vegas randomization doesn’t help 

• Will design a randomized algorithm that works with high probability 

– For any item x, we can estimate its actual count within error εn 

with probability 1-δ for any small constant δ 
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Technique Three: Hashing 
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The Count-Min sketch [Cormode, Muthukrishnan, 2003] 
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 A two-dimensional array counts with width w and depth                  

 

Given parameters               , set                  and                    .   

 

d hash functions are chosen randomly from a 2-universal family 

(pair-wise independent) 

 

For example, we can choose a prime number p > u, and random aj, bj,  

j=1,…,d.  Define: 

                               hj(x) = (aj x + bj mod p) mod w 

 

Property: for any x ≠ y, Pr[hj(x)=hj(y)] ≤ 1/w 
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Updating the sketch 
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Update procedure : 

When item x arrives, set dj 1
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When item x is deleted, do the same except changing +1 to -1 



Estimating the count of x 
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Proof 
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We introduce indicator variables 
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For the other direction, observe that 
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Technique Four: Tail Bounds 
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Estimating Self-Join Size 

• Given a sequence of items: 

 

A A B C D B A A B B A A A A A A C C C D A B A A A 

1  1  2 3  4  2  1 1 2  2  1 1 1  1 1  1  3  3 3  4 1  2 1  1  1 

 

• Let xi be the frequency of item I 

 

• The self-join size is F2=∑i xi
2 
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Solution: The AMS sketch [Alon-Matias-Szegedy’96] 

• Let h(i) be a 4-wise independent hash function such that 

 

  Pr[h(i) = 1] = Pr[h(i) = -1] = 1/2  

 

• The algorithm maintains 

    

   Z = ∑i h(i)xi            (how to maintain?) 

 

• Algorithm returns Y = Z2 

 

• Claim: Y approximates F2  “well” 
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Analysis 

• The expectation of Z2 = (Σi h(i) xi )
2 is equal to 

E[Z2] = E[Σi,j h(i)xih(j)xj] = Σi,j xi xj E[h(i)h(j)] 

 

• We have 

– For i ≠ j, E[h(i)h(j)] = 0 

– For i = j, E[h(i)h(j)] = 1 

 

• Therefore 

   E[Z2] = Σi xi
2 = F2 

 

     (unbiased estimator) 
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Need to bound variance 

• Var[Y] = E[Z4] − E2[Z2]  

     = Σi xi
4 + 6 Σi<j xi

2 xj
2 − (Σi xi

2)2 

                 = Σi xi
4 + 6 Σi<j xi

2 xj
2 − Σi xi

4 − 2 Σi<j xi
2 xj

2  

                 = 4 Σi<j xi
2 xj

2 

            ≤ 2 (Σi xi
2)2 

            = 2 E2[Y] 

ζ = O(E[Y]) 

• Now use Chebyshev inequality: 

                       Pr[ |E[Y]-Y| ≥ cζ ] ≤ 1/c2 

 

a constant approximation with a constant probability 

 

• How to boost? 
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Reduce error: Taking average 
• Run k independent instances, yielding Y1, …, Yk 

and return B = (Y1+ …+ Yk) / k 

 

• E[B] = (E[Y1]+ …+ E[Yk]) / k = E[Y] 

• Var[B] = (Var[Y1]+ …+ Var[Yk]) / k
2 = Var[Y] / k 

 ζ = E[Y] / k1/2 

 

• We choose k = O(1/ε2), then ζ = 2 ε E[Y] 
 

• Chebyshev gives a (1+ ε)-approximation with constant probability, 

say 3/4 

 



Boost probability: Taking median 

• Run m = O(log(1/δ)) independent copies of the previous algorithm: 

B1, …, Bm  

• Take the median 

• For the median to be outside of the range 

               ((1- ε) E[Y], (1+ ε) E[Y]),  

 

at least half of B1, …, Bm have to be wrong. 

• But in expectation, at most ¼ of them should be wrong. 

• By the Chernoff inequality, this happens with probability 

2Θ(m) = δ 

• The sketch has total size O(1/ε2 log(1/δ)) 
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Chernoff inequality 

• Let X1, ..., Xn be independent Bernoulli random variables, each 

having probability p > 1/2. Then the probability of simultaneous 

occurrence of more than n/2 of the events {Xk = 1} has an exact 

value P, where 

 

  

The Chernoff bound shows that P has the following lower bound: 
   

 


