CS6931 Database Seminar

Lecture 4: Streaming Model

Problem One: Missing Card

- I take one from a deck of 52 cards, and pass the rest to you. Suppose you only have a (very basic) calculator and bad memory, how can you find out which card is missing with just one pass over the 51 cards?
- What if there are two missing cards?

A data stream algorithm ...

- Makes one pass over the input data
- Uses a small amount of memory (much smaller than the input data)
- Computes something

Why do we need streaming algorithms

- Often get to see the data once
- Don't want to store the entire data
- Data stored on disk, sequential scans are much faster
- Data stream algorithms have been a very active research area for the past 15 years
- Problems considered today
- Missing card
- Majority
- Heavy hitters
- Self-join size

Streaming Model

- We model data streams as sequences of simple tuples
- Complexity arises from massive length of streams
- Arrivals only streams:
- Example: (x, 3), (y, 2), (x, 2) encodes the arrival of 3 copies of item x,
 2 copies of y, then 2 copies of x.
- Could represent eg. packets on a network; power usage
- Arrivals and departures:
- Example: ($\mathrm{x}, 3$), $(\mathrm{y}, 2),(\mathrm{x},-2)$ encodes x final state of (x, 1), (y, 2).

- Can represent fluctuating quantities, or measure differences between two distributions

Technique One: Tricks

Problem two: Majority

- Given a sequence of items, find the majority if there is one
- A A B CDBAABBAAAAAACCCDABAAA
- Answer: A
- Trivial if we have $\mathrm{O}(\mathrm{n})$ memory
- Can you do it with $\mathrm{O}(1)$ memory and two passes?
- First pass: find the possible candidate
- Second pass: compute its frequency and verify that it is $>\mathrm{n} / 2$
- How about one pass?
- Unfortunately, no

Problem three: Heavy hitters

- Problem: find all items with counts $>\varphi n$, for some $0<\varphi<1$
- Relaxation:
- If an item has count $>\varphi \mathrm{n}$, it must be reported, together with its estimated count with (absolute) error $<\varepsilon n$
- If an item has count $<(\varphi-\varepsilon) \mathrm{n}$, it cannot be reported
- For items in between, don't care
- In fact, we will estimate all counts with at most en error
- Applications
- Frequent IP addresses
- Data mining

Technique Two: Counter-Based Algorithms

The algorithm [Metwally, Agrawal, Abbadi, 2006]

- Input parameters: number of counters m, stream S
- Algorithm:
for each element e in $S\{$ AABCDBAABBAAAAAACCCDAB if e is monitored \{
find counter of e, counter ${ }_{i}$; counter ${ }_{i}++$;
\} else \{
find the element with least frequency, e_{m}, denote its frequency min; replace e_{m} with e; assign counter for e with $\min +1$;
\}
\}

Properties of the Algorithm

- Actual count of a monitored item \leq counter
- Actual count of a monitored item \geq counter - min
- Actual count of an item not monitored $\leq \min$
- Proof by induction
- The sum of the counters maintained is n
- Why?
- So $\min <=n / m$
- If we set $m=1 / \varepsilon$, it's sufficient to solve the heavy hitter problem
- Why?
- So the heavy hitter problem can be solved in $\mathrm{O}(1 / \varepsilon)$ space

How about deletions?

- Any deterministic algorithm needs $\mathrm{O}\left(1 / \varepsilon^{\wedge} 2\right)$ space
- Why?
- In fact, Las Vegas randomization doesn't help
- Will design a randomized algorithm that works with high probability
- For any item x, we can estimate its actual count within error εn with probability $1-\delta$ for any small constant δ

Technique Three: Hashing

The Count-Min sketch [Cormode, Muthukrishnan, 2003]

A two-dimensional array counts with width w and depth
Given parameters (ε, δ), set $w=\left\lceil\frac{2}{\varepsilon}\right\rceil$ and $d=\left\lceil\log \frac{1}{\delta}\right\rceil$.
hash functions are chosen randomly from a 2 -universal family pair-wise independent)
or example, we can choose a prime number $p>u$, and random a_{j}, b_{j} $=1, \ldots, d$. Define:

$$
h_{j}(x)=\left(a_{j} x+b_{j} \bmod p\right) \bmod w
$$

Rroperty: for any $x \neq y, \operatorname{Pr}\left[h_{j}(x)=h_{j}(y)\right] \leq 1 / w$

Updating the sketch

Update procedure :
When item x arrives, set $\nabla \mathbf{1} \leq j \leq d$

$$
\operatorname{count}\left[j, h_{j}(x)\right] \leftarrow \operatorname{count}\left[j, h_{j}(x)\right]+1
$$

When item x is deleted, do the same except changing +1 to

Estimating the count of x

$Q(x) \longleftrightarrow \hat{a}_{x}=\min _{j} \operatorname{count}\left[j, h_{j}(x)\right]$

actual count estimated count

Theorem 1

$$
\begin{aligned}
& a_{x} \leq \hat{a}_{x} \\
& \operatorname{Pr}\left[\hat{a}_{x}>a_{x}+\varepsilon n\right] \leq \delta
\end{aligned}
$$

Proof

We introduce indicator variables

$$
\begin{aligned}
& I_{x, y, j}= \begin{cases}1 & \text { if }(x \neq y) \wedge\left(h_{j}(x)=h_{j}(y)\right) \\
0 & \text { otherwise }\end{cases} \\
& E\left(I_{x, y, j}\right)=\operatorname{Pr}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w}=\frac{\varepsilon}{2}
\end{aligned}
$$

Define the variable

$$
I_{x, j}=\sum_{y} I_{x, y, j} a_{y}
$$

By construction,

$$
\operatorname{count}\left[j, h_{j}(x)\right]=a_{x}+I_{x, j} \Rightarrow \min \operatorname{count}\left[j, h_{j}(i)\right] \geq a_{i}
$$

For the other direction, observe that

$$
E\left(I_{x, j}\right)=E\left(\sum_{y} I_{x, y, j} a_{y}\right)=\sum_{y} a_{y} E\left(I_{x, y, j}\right) \leq n \varepsilon / 2
$$

$\operatorname{Pr}\left[\hat{a}_{x}>a_{x}+\varepsilon n\right]=\operatorname{Pr}\left[\forall j\right.$, count $\left.\left[j, h_{j}(x)\right]>a_{x}+\varepsilon n\right]$

$$
=\operatorname{Pr}\left[\forall j, a_{x}+I_{x, j}>a_{x}+\varepsilon n\right]
$$

Markov

$$
\underset{\longrightarrow}{=} \operatorname{Pr}\left[\forall j, I_{x, j}>2 E\left(I_{x, j}\right)\right]<2^{-d} \leq \delta
$$

$\operatorname{Pr}[X \geq t] \leq \frac{E(X)}{t} \quad \forall t>0$
So, the Count-Min Sketch has size $O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)$

Technique Four: Tail Bounds

Estimating Self-Join Size

- Given a sequence of items:

A ABCDBAABBAAAAACCCDABAAA 1123421122111111333412111

- Let x_{i} be the frequency of item I
- The self-join size is $F_{2}=\sum_{i} x_{i}^{2}$

Solution: The AMS sketch [Alon-Matias-Szegedy'96]

- Let $h(i)$ be a 4 -wise independent hash function such that

$$
\operatorname{Pr}[h(i)=1]=\operatorname{Pr}[h(i)=-1]=1 / 2
$$

- The algorithm maintains

$$
Z=\sum_{i} h(i) x_{i} \quad \text { (how to maintain?) }
$$

- Algorithm returns $Y=Z^{2}$
- Claim: Y approximates F_{2} "well"

Analysis

- The expectation of $Z^{2}=\left(\Sigma_{i} h(i) x_{i}\right)^{2}$ is equal to $\mathrm{E}\left[Z^{2}\right]=\mathrm{E}\left[\Sigma_{i, j} h(i) x_{i} h(j) x_{j}\right]=\Sigma_{i, j} x_{i} x_{j} \mathrm{E}[h(i) h(j)]$
- We have
- For $i \neq j, \mathrm{E}[h(i) h(j)]=0$
- For $i=j, \mathrm{E}[h(i) h(j)]=1$
- Therefore

$$
\mathrm{E}\left[Z^{2}\right]=\Sigma_{i} x_{i}^{2}=F_{2}
$$

(unbiased estimator)

Need to bound variance

- $\operatorname{Var}[\mathrm{Y}]=\mathrm{E}\left[\mathrm{Z}^{4}\right]-\mathrm{E}^{2}\left[\mathrm{Z}^{2}\right]$

$$
=\Sigma_{i} x_{i}^{4}+6 \Sigma_{i<j} x_{i}^{2} x_{j}^{2}-\left(\Sigma_{i} x_{i}^{2}\right)^{2}
$$

$$
=\Sigma_{i} x_{i}^{4}+6 \Sigma_{i<j} x_{i}^{2^{2}} x_{j}^{2}-\Sigma_{i} x_{i}^{4}-2 \Sigma_{i<j} x_{i}^{2} x_{j}^{2}
$$

$$
=4 \Sigma_{i<j} x_{i}{ }^{2} x_{j}{ }^{2}
$$

$$
\leq 2\left(\Sigma_{i} x_{i}^{2}\right)^{2}
$$

$$
=2 \mathrm{E}^{2}[\mathrm{Y}]
$$

$\sigma=\mathrm{O}(\mathrm{E}[\mathrm{Y}])$

- Now use Chebyshev inequality:

$$
\operatorname{Pr}[|\mathrm{E}[\mathrm{Y}]-\mathrm{Y}| \geq \mathrm{c} \sigma] \leq 1 / \mathrm{c}^{2}
$$

a constant approximation with a constant probability

- How to boost?

Reduce error: Taking average

- Run k independent instances, yielding $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}}$ and return $\mathrm{B}=\left(\mathrm{Y}_{1}+\ldots+\mathrm{Y}_{\mathrm{k}}\right) / \mathrm{k}$
- $\mathrm{E}[\mathrm{B}]=\left(\mathrm{E}\left[\mathrm{Y}_{1}\right]+\ldots+\mathrm{E}\left[\mathrm{Y}_{\mathrm{k}}\right]\right) / \mathrm{k}=\mathrm{E}[\mathrm{Y}]$
- $\operatorname{Var}[\mathrm{B}]=\left(\operatorname{Var}\left[\mathrm{Y}_{1}\right]+\ldots+\operatorname{Var}\left[\mathrm{Y}_{\mathrm{k}}\right]\right) / \mathrm{k}^{2}=\operatorname{Var}[\mathrm{Y}] / \mathrm{k}$ $\sigma=\mathrm{E}[\mathrm{Y}] / \mathrm{k}^{1 / 2}$
- We choose $\mathrm{k}=\mathrm{O}\left(1 / \varepsilon^{2}\right)$, then $\sigma=2 \varepsilon \mathrm{E}[\mathrm{Y}]$
- Chebyshev gives a (1+ $)$-approximation with constant probability, say 3/4

Boost probability: Taking median

- Run $\mathrm{m}=\mathrm{O}(\log (1 / \delta))$ independent copies of the previous algorithm: $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}$
- Take the median
- For the median to be outside of the range

$$
((1-\varepsilon) \mathrm{E}[\mathrm{Y}],(1+\varepsilon) \mathrm{E}[\mathrm{Y}]),
$$

at least half of B_{1}, \ldots, B_{m} have to be wrong.

- But in expectation, at most $1 / 4$ of them should be wrong.
- By the Chernoff inequality, this happens with probability $2^{\Theta(\mathrm{m})}=\delta$
- The sketch has total size $\mathrm{O}\left(1 / \varepsilon^{2} \log (1 / \delta)\right)$

Chernoff inequality

- Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables, each having probability $p>1 / 2$. Then the probability of simultaneous occurrence of more than $n / 2$ of the events $\left\{X_{k}=1\right\}$ has an exact value P, where

$$
P=\sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

The Chernoff bound shows that P has the following lower bound:

$$
P \geq 1-\mathrm{e}^{-2 n\left(p-\frac{1}{2}\right)^{2}}
$$

