CS6931 Database Seminar

Lecture 4: Streaming Model

Problem One: Missing Card

- I take one from a deck of 52 cards, and pass the rest to you. Suppose you only have a (very basic) calculator and bad memory, how can you find out which card is missing with just one pass over the 51 cards?
- What if there are two missing cards?

- Makes one pass over the input data
- Uses a small amount of memory (much smaller than the input data)
- Computes something

Why do we need streaming algorithms

- Often get to see the data once
- Don't want to store the entire data
- Data stored on disk, sequential scans are much faster
- Data stream algorithms have been a very active research area for the past 15 years
- Problems considered today
 - Missing card
 - Majority
 - Heavy hitters
 - Self-join size

Streaming Model

- We model data streams as sequences of simple tuples
- Complexity arises from massive length of streams
- Arrivals only streams:

- Example: (x, 3), (y, 2), (x, 2) encodes

the arrival of 3 copies of item x,

2 copies of y, then 2 copies of x.

Х

- Could represent eg. packets on a network; power usage
- Arrivals and departures:
 - Example: (x, 3), (y,2), (x, -2) encodes
 final state of (x, 1), (y, 2).
 - Can represent fluctuating quantities, or measure differences between two distributions

Technique One: Tricks

Problem two: Majority

- Given a sequence of items, find the majority if there is one
- A A B C D B A A B B A A A A A A A C C C D A B A A A
- Answer: A
- Trivial if we have O(n) memory
- Can you do it with O(1) memory and two passes?
 - First pass: find the possible candidate
 - Second pass: compute its frequency and verify that it is > n/2
- How about one pass?
 - Unfortunately, no

Problem three: Heavy hitters

- Problem: find all items with counts > ϕ n, for some 0< ϕ <1
- Relaxation:
 - If an item has count > ϕ n, it must be reported, together with its estimated count with (absolute) error < ϵ n
 - If an item has count < ($\phi \epsilon$) n, it cannot be reported
 - For items in between, don't care
- In fact, we will estimate all counts with at most ɛn error
- Applications
 - Frequent IP addresses
 - Data mining

Technique Two: Counter-Based Algorithms

The algorithm [Metwally, Agrawal, Abbadi, 2006]

- Input parameters: number of counters *m*, stream *S*
- Algorithm:

```
for each element e in S { A A B C D B A A B B A A A A A A C C C D A B
```

```
if e is monitored {
```

```
find counter of e, counter<sub>i</sub>;
```

```
counter<sub>i</sub>++;
```

```
} else {
```

find the element with least frequency, e_m , denote its frequency *min*; replace e_m with e;

```
assign counter for e with min+1;
```

Properties of the Algorithm

- Actual count of a monitored item \leq counter
- Actual count of a monitored item \geq counter min
- Actual count of an item not monitored \leq min
 - Proof by induction
- The sum of the counters maintained is *n*
 - Why?
- So min $\leq n/m$
- If we set $m = 1/\epsilon$, it's sufficient to solve the heavy hitter problem Why?
 - So the heavy hitter problem can be solved in $O(1/\epsilon)$ space

How about deletions?

- Any deterministic algorithm needs O(1/ɛ^2) space
 Why?
 - In fact, Las Vegas randomization doesn't help
- Will design a randomized algorithm that works with *high probability*
 - For any item *x*, we can estimate its actual count within error εn with probability 1- δ for any small constant δ

Technique Three: Hashing

The Count-Min sketch [Cormode, Muthukrishnan, 2003] A two-dimensional array counts with width *w* and depth

Given parameters (ε, δ) , set $w = \left\lceil \frac{2}{\varepsilon} \right\rceil$ and $d = \left\lceil \log \frac{1}{\delta} \right\rceil$.

l hash functions are chosen randomly from a 2-universal family pair-wise independent)

For example, we can choose a prime number p > u, and random a_j , $b_j = 1, ..., d$. Define:

$$h_j(x) = (a_j x + b_j \bmod p) \bmod w$$

Property: for any $x \neq y$, $\Pr[h_j(x)=h_j(y)] \leq 1/w$

Updating the sketch

Update procedure :

When item x arrives, set $orall 1 \leq j \leq d$

 $count[j, h_j(x)] \leftarrow count[j, h_j(x)] + 1$

When item x is deleted, do the same except changing +1 to f

Estimating the count of *x*

$$Q(x) \implies \hat{a}_x = \min_j count[j, h_j(x)]$$

 $\Pr[\hat{a}_x > a_x + \varepsilon n] \le \delta$

Proof

We introduce indicator variables

$$I_{x,y,j} = \begin{cases} 1 & \text{if } (x \neq y) \land (h_j(x) = h_j(y)) \\ 0 & \text{otherwise} \end{cases}$$

$$E(I_{x,y,j}) = \Pr[h_j(x) = h_j(y)] \le \frac{1}{w} = \frac{\varepsilon}{2}$$

T

Define the variable
$$I_{x,j} = \sum_{y} I_{x,y,j} a_{y}$$

By construction,

 $count[j, h_j(x)] = a_x + I_{x,j} \implies min \ count[j, h_j(i)] \ge a_i$

For the other direction, observe that

$$E(I_{x,j}) = E\left(\sum_{y} I_{x,y,j} a_{y}\right) = \sum_{y} a_{y} E(I_{x,y,j}) \le n\varepsilon/2$$

$$\Pr[\hat{a}_{x} > a_{x} + \varepsilon n] = \Pr[\forall j, count[j, h_{j}(x)] > a_{x} + \varepsilon n]$$
$$= \Pr[\forall j, a_{x} + I_{x,j} > a_{x} + \varepsilon n]$$
$$= \Pr[\forall j, I_{x,j} > 2E(I_{x,j})] < 2^{-d} \le \delta$$
$$Markov$$
$$\Pr[X \ge t] \le \frac{E(X)}{t} \quad \forall t > 0$$
So, the Count-Min Sketch has size $O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$

Technique Four: Tail Bounds

Estimating Self-Join Size

• Given a sequence of items:

A A B C D B A A B B A A A A A A C C C D A B A A A 1 1 2 3 4 2 1 1 2 2 1 1 1 1 1 1 3 3 3 4 1 2 1 1 1

- Let x_i be the frequency of item I
- The self-join size is $F_2 = \sum_i x_i^2$

Solution: The AMS sketch [Alon-Matias-Szegedy'96]

• Let h(i) be a 4-wise independent hash function such that

 $\Pr[h(i) = 1] = \Pr[h(i) = -1] = 1/2$

• The algorithm maintains

 $Z = \sum_{i} h(i)x_i$ (how to maintain?)

- Algorithm returns $Y = Z^2$
- Claim: *Y* approximates *F*₂ "well"

Analysis

- The expectation of $Z^2 = (\sum_i h(i) x_i)^2$ is equal to $E[Z^2] = E[\sum_{i,j} h(i)x_ih(j)x_j] = \sum_{i,j} x_i x_j E[h(i)h(j)]$
- We have
 - For $i \neq j$, E[h(i)h(j)] = 0
 - $For \ i = j, E[h(i)h(j)] = 1$
- Therefore

$$\operatorname{E}[Z^2] = \sum_i x_i^2 = F_2$$

(unbiased estimator)

Need to bound variance

- Var[Y] = E[Z⁴] E²[Z²] = $\Sigma_i x_i^4 + 6 \Sigma_{i < j} x_i^2 x_j^2 - (\Sigma_i x_i^2)^2$ = $\Sigma_i x_i^4 + 6 \Sigma_{i < j} x_i^2 x_j^2 - \Sigma_i x_i^4 - 2 \Sigma_{i < j} x_i^2 x_j^2$ = $4 \Sigma_{i < j} x_i^2 x_j^2$ $\leq 2 (\Sigma_i x_i^2)^2$ = $2 E^2[Y]$ $\sigma = O(E[Y])$
- Now use Chebyshev inequality: $Pr[|E[Y]-Y| \ge c\sigma] \le 1/c^2$

a constant approximation with a constant probability

• How to boost?

Reduce error: Taking average

- Run k independent instances, yielding $Y_1, ..., Y_k$ and return $B = (Y_1 + ... + Y_k) / k$
- $E[B] = (E[Y_1] + ... + E[Y_k]) / k = E[Y]$
- $Var[B] = (Var[Y_1] + ... + Var[Y_k]) / k^2 = Var[Y] / k$ $\sigma = E[Y] / k^{1/2}$
- We choose $k = O(1/\epsilon^2)$, then $\sigma = 2 \epsilon E[Y]$
- Chebyshev gives a (1+ ε)-approximation with constant probability, say 3/4

Boost probability: Taking median

- Run m = O(log(1/ δ)) independent copies of the previous algorithm: B₁, ..., B_m
- Take the median
- For the median to be outside of the range $((1 \varepsilon) E[Y], (1 + \varepsilon) E[Y]),$

at least half of $B_1, ..., B_m$ have to be wrong.

- But in expectation, at most ¹/₄ of them should be wrong.
- By the Chernoff inequality, this happens with probability $2^{\Theta(m)} = \delta$
- The sketch has total size $O(1/\epsilon^2 \log(1/\delta))$

Chernoff inequality

• Let X_1 , ..., X_n be independent Bernoulli random variables, each having probability p > 1/2. Then the probability of simultaneous occurrence of more than n/2 of the events $\{X_k = 1\}$ has an exact value P, where

$$P = \sum_{i=\lfloor \frac{n}{2} \rfloor+1}^{n} \binom{n}{i} p^{i} (1-p)^{n-i}.$$

The Chernoff bound shows that *P* has the following lower bound:

$$P \ge 1 - e^{-2n\left(p - \frac{1}{2}\right)^2}$$