CS6931 Database Seminar

Lecture 4: Streaming Model




Problem One: Missing Card

* | take one from a deck of 52 cards, and pass the rest to you. Suppose
you only have a (very basic) calculator and bad memory, how can
you find out which card is missing with just one pass over the 51
cards?

« What if there are two missing cards?




A data stream algorithm ...

« Makes one pass over the input data

 Uses a small amount of memory (much smaller than the input
data)

« Computes something




Why do we need streaming algorithms
Often get to see the data once
Don’t want to store the entire data
Data stored on disk, sequential scans are much faster

Data stream algorithms have been a very active research area for the
past 15 years

Problems considered today
— Missing card

— Majority

— Heavy hitters

— Self-join size




Streaming Model

We model data streams as sequences of simple tuples
Complexity arises from massive length of streams
Arrivals only streams:

_E le: (x, 3), (¥, 2), (x, 2 des
xample: (x, 3), (v, 2), (x, 2) encodes - ) o o o @

y @@

the arrival of 3 copies of item x,
2 copies of y, then 2 copies of x.

— Could represent eg. packets on a network; power usage

Arrivals and departures:
— Example: (x, 3), (v,2), (, -2) encodes x © OO

final state of (x, 1), (y, 2). y 9@

— Can represent fluctuating quantities, or measure
differences between two distributions




Technique One: Tricks




Problem two: Majority
Given a sequence of items, find the majority if there is one

AABCDBAABBAAAAAACCCDABAAA
Answer: A

Trivial if we have O(n) memory

Can you do it with O(1) memory and two passes?

— First pass: find the possible candidate

— Second pass: compute its frequency and verify that it is > n/2
How about one pass?

— Unfortunately, no




Problem three: Heavy hitters

Problem: find all items with counts > ¢n, for some 0< <1

Relaxation:

— If an item has count > ¢ n, it must be reported, together with its
estimated count with (absolute) error < en

— If an item has count < (¢ — €) n, it cannot be reported
— For items 1in between, don’t care
In fact, we will estimate all counts with at most en error
Applications
— Frequent IP addresses
— Data mining




Technique Two: Counter-Based Algorithms




The algorithm [metwally, Agrawal, Abbadi, 2006]

* Input parameters: number of counters m, stream S
 Algorithm:
for each elemente in S {
If e is monitored {
find counter of e, counter;
counter;++;
}else {
find the element with least frequency, e, denote its frequency min;
replace e, with e;
assign counter for e with min+1;

}
}

AABCDBAABBAAAAAACCCDARB




Properties of the Algorithm
Actual count of a monitored item < counter
Actual count of a monitored item > counter — min
Actual count of an item not monitored < min
— Proof by induction

The sum of the counters maintained is n
— Why?

So min <= n/m

If we set m = 1/g, it’s sufficient to solve the heavy hitter problem
— Why?

— So the heavy hitter problem can be solved in O(1/¢) space




How about deletions?
 Any deterministic algorithm needs O(1/¢"2) space
— Why?
— In fact, Las Vegas randomization doesn’t help
« Will design a randomized algorithm that works with high probability

— For any item x, we can estimate its actual count within error en
with probability 1-6 for any small constant 6




Technique Three: Hashing




The Count-Min sketch [Cormode, Muthukrishnan, 2003]

A two-dimensional array counts with width w and depth

2
iven parameters (g, §) ,set W= L—‘ and d = [log %1 :

/ hash functions are chosen randomly from a 2-universal family
Jpair-wise independent)

or example, we can choose a prime number p > u, and random a;, b,
=],...,d. Define:
hi(x) = (a;x + b, mod p) mod w

Xroperty: for any x # y, Pr[A(x)=h(y)] < 1/w




Updating the sketch

Update procedure :
When item x arrives, set W1 < jJ =< d

count| j, h. (x)] «—count[ j,h.(x)]+1

/+1

- +1]

>+ 1
+1




Estimating the count of x
Q(X) === a4, =mincount]],h;(x)]
J

actual count estimated count

\

Theorem 1 a,

/
<a

Prla, >a, +en]<o




Proof
We introduce indicator variables

1 if X=Y)AM;(x)=h;(y))

0O otherwise

€

(L) =Prih, (0 =h, (] = =2

Define the variable L =2 013y
y

By construction,

count[ j,h. (x)]=a, +1,; => mincount[j,h;(1)] > &




01 the other direction, observe that

E(l, ;)= E(Z|X,y,jayj=2ayE(|x,y,j) <ng/2

Pr[a, > a, +en]=Pr[Vvj, count[ j,h; (x)] > a, +en]
=Pr[v}),a, +1,; >a, +en]
=Pr[vj, I, , >2E(l, )]<2° <68

/ ’ ’

Markov

Pr[X >t]< E(tX) vt>0

So, the Count-Min Sketch has size O(; log gj




Technique Four: Tail Bounds




Estimating Self-Join Size
 Given a sequence of items:

AABCDBAABBAAAAAACCCDABAAA
1123421122111111333412111

* Let x; be the frequency of item |

* The self-join size is F,=); x:




SOIUt'On The AMS SketCh [Alon-Matias-Szegedy’96]
Let h(i) be a 4-wise independent hash function such that

Prlh(i) = 1] = Pr[h(i) = -1] = 1/2

The algorithm maintains
Z=>.h()x (how to maintain?)

Algorithm returns Y = Z2

Claim: Y approximates F, “well”




Analysis

 The expectation of Z? = (Z; h(i) x; )? is equal to
E[Z%] = E[Z;; h(i)x;h()x] = Z;; %; X; E[h(D)h()]

 \We have

—For i 4, E[h(i)h(j)] = 0
—Fori=j, E[n()h(j)] = 1

e Therefore

E[Z7] =Zix2 = F,

(unbiased estimator)




Need to bound variance
« Var[Y] = E[Z*] — E?[Z?]
= Zix* 6 i X X7 — (i %%)?
= T Xt 6 T X% X% = T Xt = 2 g X% X8
= 4 X X7 X°
<2 (&%)
=2 E?[Y]
o = O(E[Y])
* Now use Chebyshev inequality:
Prl|E[Y]-Y|>co ] < 1/¢?

a constant approximation with a constant probability

 How to boost?




Reduce error: Taking average

Run k independent instances, yielding Y, ..., Y,
and return B=(Y,+ ...+ Y, ) /k

E[B] = (E[Y,]*+ ... T E[Y,]) / k= E[Y]
Var[B] = (Var[Y ]+ ...+ Var[Y,]) / k*= Var[Y] / k
o =E[Y]/ k2

We choose k = O(1/¢?), then 6 =2 ¢ E[Y]

Chebyshev gives a (1+ €)-approximation with constant probability,
say 3/4




Boost probability: Taking median

Run m = O(log(1/0)) independent copies of the previous algorithm:
B, ..., B,

Take the median

For the median to be outside of the range
((1- &) E[Y], (1+¢) E[Y]),

at least half of B, ..., B, have to be wrong.
But in expectation, at most %2 of them should be wrong.

By the Chernoff inequality, this happens with probability
20(m) = §

The sketch has total size O(1/e?log(1/9))




Chernoff inequality

Let X, ..., X,, be independent Bernoulli random variables, each
having probability p > 1/2. Then the probability of simultaneous
occurrence of more than n/2 of the events {X, = 1} has an exact

value P, where

Tl
Y .
P= Y (T)ra-n
1
i=| §|+1
The Chernoff bound shows that P has the following lower bound:

P>1—_e(1)




