

Lecture 4: Streaming Model

CS6931 Database Seminar

Problem One: Missing Card

• I take one from a deck of 52 cards, and pass the rest to you. Suppose

you only have a (very basic) calculator and bad memory, how can

you find out which card is missing with just one pass over the 51

cards?

• What if there are two missing cards?

2

A data stream algorithm …

• Makes one pass over the input data

• Uses a small amount of memory (much smaller than the input

data)

• Computes something

3

Why do we need streaming algorithms

• Often get to see the data once

• Don’t want to store the entire data

• Data stored on disk, sequential scans are much faster

• Data stream algorithms have been a very active research area for the

past 15 years

• Problems considered today

– Missing card

– Majority

– Heavy hitters

– Self-join size

4

Streaming Model

• We model data streams as sequences of simple tuples

• Complexity arises from massive length of streams

• Arrivals only streams:

 – Example: (x, 3), (y, 2), (x, 2) encodes

 the arrival of 3 copies of item x,

 2 copies of y, then 2 copies of x.

 – Could represent eg. packets on a network; power usage

• Arrivals and departures:

 – Example: (x, 3), (y,2), (x, -2) encodes

 final state of (x, 1), (y, 2).

 – Can represent fluctuating quantities, or measure

 differences between two distributions

Technique One: Tricks

6

Problem two: Majority

• Given a sequence of items, find the majority if there is one

• A A B C D B A A B B A A A A A A C C C D A B A A A

• Answer: A

• Trivial if we have O(n) memory

• Can you do it with O(1) memory and two passes?

– First pass: find the possible candidate

– Second pass: compute its frequency and verify that it is > n/2

• How about one pass?

– Unfortunately, no

7

Problem three: Heavy hitters

• Problem: find all items with counts > φn, for some 0< φ<1

• Relaxation:

– If an item has count > φ n, it must be reported, together with its

estimated count with (absolute) error < εn

– If an item has count < (φ − ε) n, it cannot be reported

– For items in between, don’t care

• In fact, we will estimate all counts with at most εn error

• Applications

– Frequent IP addresses

– Data mining

8

Technique Two: Counter-Based Algorithms

9

The algorithm [Metwally, Agrawal, Abbadi, 2006]

• Input parameters: number of counters m, stream S

• Algorithm:

for each element e in S {

 if e is monitored {

 find counter of e, counteri;

 counteri++;

 } else {

 find the element with least frequency, em, denote its frequency min;

 replace em with e;

 assign counter for e with min+1;

 }

}

10

A A B C D B A A B B A A A A A A C C C D A B

Properties of the Algorithm

• Actual count of a monitored item ≤ counter

• Actual count of a monitored item ≥ counter – min

• Actual count of an item not monitored ≤ min

– Proof by induction

• The sum of the counters maintained is n

– Why?

• So min <= n/m

• If we set m = 1/ε, it’s sufficient to solve the heavy hitter problem

– Why?

– So the heavy hitter problem can be solved in O(1/ε) space

11

How about deletions?

• Any deterministic algorithm needs O(1/ε^2) space

– Why?

– In fact, Las Vegas randomization doesn’t help

• Will design a randomized algorithm that works with high probability

– For any item x, we can estimate its actual count within error εn

with probability 1-δ for any small constant δ

12

Technique Three: Hashing

13

The Count-Min sketch [Cormode, Muthukrishnan, 2003]

14

 A two-dimensional array counts with width w and depth

Given parameters , set and .

d hash functions are chosen randomly from a 2-universal family

(pair-wise independent)

For example, we can choose a prime number p > u, and random aj, bj,

j=1,…,d. Define:

 hj(x) = (aj x + bj mod p) mod w

Property: for any x ≠ y, Pr[hj(x)=hj(y)] ≤ 1/w

),( 











2
w 












1
logd

Updating the sketch

15

Update procedure :

When item x arrives, set dj 1

1)](,[)](,[ xhjcountxhjcount jj



























1

1

1

1

x
1h

dh

When item x is deleted, do the same except changing +1 to -1

Estimating the count of x

16

)(xQ)](,[minˆ xhjcounta j
j

x 

Theorem 1 xx aa ˆ

 ]ˆPr[naa xx

actual count estimated count

Proof

17

We introduce indicator variables

jyxI ,, 
))()(()(yhxhyx jj 1 if

0 otherwise

2

1
)]()(Pr[)(,,




w
yhxhIE jjjyx

Define the variable 
y

yjyxjx aII ,,,

By construction,

jxxj Iaxhjcount ,)](,[ ij aihjcount )](,[min

18

For the other direction, observe that

])](,[,Pr[]ˆPr[naxhjcountjnaa xjxx  

],Pr[, naIaj xjxx 

 d

jxjx IEIj 2)](2,Pr[,,

Markov

inequality 0
)(

]Pr[ t
t

XE
tX

■

2/)()(,,,,,  














y

jyxy

y

yjyxjx nIEaaIEIE 

So, the Count-Min Sketch has size 










1
log

1
O

Technique Four: Tail Bounds

19

Estimating Self-Join Size

• Given a sequence of items:

A A B C D B A A B B A A A A A A C C C D A B A A A

1 1 2 3 4 2 1 1 2 2 1 1 1 1 1 1 3 3 3 4 1 2 1 1 1

• Let xi be the frequency of item I

• The self-join size is F2=∑i xi
2

20

Solution: The AMS sketch [Alon-Matias-Szegedy’96]

• Let h(i) be a 4-wise independent hash function such that

 Pr[h(i) = 1] = Pr[h(i) = -1] = 1/2

• The algorithm maintains

 Z = ∑i h(i)xi (how to maintain?)

• Algorithm returns Y = Z2

• Claim: Y approximates F2 “well”

21

Analysis

• The expectation of Z2 = (Σi h(i) xi)
2 is equal to

E[Z2] = E[Σi,j h(i)xih(j)xj] = Σi,j xi xj E[h(i)h(j)]

• We have

– For i ≠ j, E[h(i)h(j)] = 0

– For i = j, E[h(i)h(j)] = 1

• Therefore

 E[Z2] = Σi xi
2 = F2

 (unbiased estimator)

22

Need to bound variance

• Var[Y] = E[Z4] − E2[Z2]

 = Σi xi
4 + 6 Σi<j xi

2 xj
2 − (Σi xi

2)2

 = Σi xi
4 + 6 Σi<j xi

2 xj
2 − Σi xi

4 − 2 Σi<j xi
2 xj

2

 = 4 Σi<j xi
2 xj

2

 ≤ 2 (Σi xi
2)2

 = 2 E2[Y]

ζ = O(E[Y])

• Now use Chebyshev inequality:

 Pr[|E[Y]-Y| ≥ cζ] ≤ 1/c2

a constant approximation with a constant probability

• How to boost?

23

Reduce error: Taking average
• Run k independent instances, yielding Y1, …, Yk

and return B = (Y1+ …+ Yk) / k

• E[B] = (E[Y1]+ …+ E[Yk]) / k = E[Y]

• Var[B] = (Var[Y1]+ …+ Var[Yk]) / k
2 = Var[Y] / k

 ζ = E[Y] / k1/2

• We choose k = O(1/ε2), then ζ = 2 ε E[Y]

• Chebyshev gives a (1+ ε)-approximation with constant probability,

say 3/4

Boost probability: Taking median

• Run m = O(log(1/δ)) independent copies of the previous algorithm:

B1, …, Bm

• Take the median

• For the median to be outside of the range

 ((1- ε) E[Y], (1+ ε) E[Y]),

at least half of B1, …, Bm have to be wrong.

• But in expectation, at most ¼ of them should be wrong.

• By the Chernoff inequality, this happens with probability

2Θ(m) = δ

• The sketch has total size O(1/ε2 log(1/δ))

25

Chernoff inequality

• Let X1, ..., Xn be independent Bernoulli random variables, each

having probability p > 1/2. Then the probability of simultaneous

occurrence of more than n/2 of the events {Xk = 1} has an exact

value P, where

The Chernoff bound shows that P has the following lower bound:

