
 

Lecture 3: External Memory Indexing Structures (Contd) 

 

CS6931 Database Seminar 



Until now: Data Structures 

 

 

 

 

 

 

 

• General planer range searching (in 2-dimensional space): 

                         

– kdB-tree:                        query,          space 
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Other results 

• Many other results for e.g. 

– Higher dimensional range searching 

– Range counting, range/stabbing max, and stabbing queries 

– Halfspace (and other special cases) of range searching 

– Queries on moving objects 

– Proximity queries (closest pair, nearest neighbor, point location) 

– Structures for objects other than points (bounding rectangles) 

 

 

• Many heuristic structures in database community 



Point Enclosure Queries 

• Dual of planar range searching problem 

– Report all rectangles containing query point (x,y) 

 

 

 

 

 

 

 

• Internal memory: 

– Can be solved in O(N) space and O(log N + T) time 

– Persistent interval tree 
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Rectangle Range Searching 

• Report all rectangles intersecting query rectangle Q 

 

 

 

 

 

 

 

 

• Often used in practice when handling 

 complex geometric objects 

– Store minimal bounding rectangles (MBR) 

Q 



Rectangle Data Structures: R-Tree [Guttman, SIGMOD84] 

• Most common practically used rectangle range searching structure 

• Similar to B-tree 

– Rectangles in leaves (on same level) 

– Internal nodes contain  MBR of rectangles below each child  

 

 

 

 

 

 

 

• Note: Arbitrary order in leaves/grouping order  
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• (Point) Query: 

– Recursively visit 

relevant nodes 



Query Efficiency 

• The fewer rectangles intersected the better 



Rectangle Order 

• Intuitively 

– Objects close together in same leaves 

 small rectangles  queries descend in few subtrees  

 

 

 

 

 

• Grouping in internal nodes? 

– Small area of MBRs 

– Small perimeter of MBRs 

– Little overlap among MBRs 



R-tree Insertion Algorithm 

 

• When not yet at a leaf (choose subtree): 

– Determine rectangle whose area 

 increment after insertion is 

 smallest (small area heuristic) 

– Increase this rectangle if necessary 

 and recurse 

• At a leaf: 

– Insert if room, otherwise Split Node 

 (while trying to minimize area) 



Node Split 

New MBRs 



Linear Split Heuristic 

• Determine the furthest pair R1 and R2 : the seeds for sets S1 and S2 

• While not all MBRs distributed 

–  Add next MBR to the set whose MBR increases the least  



Quadratic Split Heuristic 

• Determine  R1 and R2 with largest  area(MBR of R1 and R2)-

area(R1) - area(R2): the seeds for sets S1 and S2 

• While not all MBRs distributed 

– Determine of every not yet distributed rectangle Rj :  

d1 = area increment of S1  Rj 

d2 = area increment of S2  Rj 

– Choose Ri with maximal 

 |d1-d2| and add to the set with 

 smallest area increment 



R-tree Deletion Algorithm 

 

 

• Find the leaf (node) and delete object; determine new (possibly 

smaller) MBR 

• If the node is too empty: 

– Delete the node recursively at its parent 

– Insert all entries of the deleted node into the R-tree  

 



R*-trees [Beckmann et al. SIGMOD90] 

 

 

• Why try to minimize area? 

– Why not overlap, perimeter,… 

 

 

• R*-tree: 

– Better heuristics for 

Choose Subtree and Split Node  



R-Tree Variants 

• Many, many R-tree variants (heuristics) have been proposed 

 

• Often bulk-loaded R-trees are used 

– Much faster than repeated insertions 

– Better space utilization 

– Can optimize more “globally” 

– Can be updated using previous update algorithms 
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How to Build an R-Tree 

• Repeated insertions 

– [Guttman84] 

– R+-tree [Sellis et al. 87]  

– R*-tree [Beckmann et al. 90] 

• Bulkloading 

– Hilbert R-Tree [Kamel and Faloutos 94] 

– Top-down Greedy Split [Garcia et al. 98] 

– Advantages: 

* Much faster than repeated insertions 

* Better space utilization 

* Usually produce R-trees with higher quality 
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R-Tree Variant: Hilbert R-Tree 

• To build a Hilbert R-Tree (cost: O(N/B logM/BN) I/Os) 

– Sort the rectangles by the Hilbert values of their centers  

– Build a B-tree on top 

Hilbert Curve 



Z-ordering 

• Basic assumption: Finite precision in the 

representation of each co-ordinate, K bits (2K values) 

• The address space is a square (image) and 

represented as a 2K  x 2K  array 

• Each element is called a pixel  

 



Z-ordering 

• Impose a linear ordering on the pixels of the image  1 

dimensional problem 

00 01 10 11 

00 

01 

10 

11 

A 

B 

ZA = shuffle(xA, yA) = shuffle(“01”, “11”) 

= 0111 = (7)10 

ZB = shuffle(“01”, “01”) = 0011 



Z-ordering 

• Given a point (x, y) and the precision K find the pixel for the point 

and then compute the z-value 

• Given a set of points, use a B+-tree to index the z-values 

• A range (rectangular) query in 2-d is mapped to a set of ranges in 1-

d 



Queries 

• Find the z-values that contained in the query and then the ranges  

00 01 10 11 

00 

01 

10 

11 

QA  range [4, 7] 
QA 

QB 

QB  ranges [2,3] and [8,9] 



Handling Regions 

• A region breaks into one or more pieces, each one with 

different z-value 

• We try to minimize the number of pieces in the representation: 

precision/space overhead trade-off 

00 01 10 11 

00 

01 

10 

11 ZR1 = 0010 = (2) 

ZR2 = 1000 = (8) 

 

ZG  = 11 

( “11” is the common prefix) 



Z-ordering for Regions 

• Break the space into 4 equal quadrants: level-1 blocks 

• Level-i block: one of the four equal quadrants of a level-(i-1) 

block 

• Pixel: level-K blocks, image level-0 block 

• For a level-i block: all its pixels have the same prefix up to i-1 

bits; the z-value of the block 



Hilbert Curve 

• We want points that are close in 2d to be close in the 1d 

• Note that in 2d there are 4 neighbors for each point where in 1d 

only 2. 

• Z-curve has some “jumps” that we would like to avoid 

• Hilbert curve avoids the jumps : recursive definition 



Hilbert Curve- example 

• It has been shown that in general Hilbert is better than the 
other space filling curves for retrieval [Jag90] 

• Hi (order-i) Hilbert curve for 2ix2i array 

H1 
H2 ... H(n+1) 



R-trees - variations 

• A: plane-sweep on HILBERT curve! 



R-trees - variations 

• A: plane-sweep on HILBERT curve! 

• In fact, it can be made dynamic (how?), as well as to handle regions 
(how?) 



R-trees - variations 

• Dynamic („Hilbert R-tree): 

– each point has an „h‟-value 
(hilbert value) 

– insertions: like a B-tree on the h-
value 

– but also store MBR, for searches 



R-trees - variations 

• Data structure of a node? 

LHV x-low, ylow 

x-high, y-high 
ptr 

h-value >= LHV & 

MBRs: inside parent MBR 

~B-tree 



R-trees - variations 

• Data structure of a node? 

LHV x-low, ylow 

x-high, y-high 
ptr 

h-value >= LHV & 

MBRs: inside parent MBR 

~ R-tree 
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Theoretical Musings 

• None of existing R-tree variants has worst-case query 

performance guarantee! 

– In the worst-case, a query can visit all nodes in the tree even when 

the output size is zero 

• R-tree is a generalized kdB-tree, so can we achieve                            ? 

• Priority R-Tree [Arge, de Berg, Haverkort, and Yi, SIGMOD04] 

– The first R-tree variant that answers a query by visiting                                         

     nodes in the worst case 

* T: Output size 

– It is optimal! 

* Follows from the kdB-tree lower bound.  

 

)//( BTBNO 

)//( BTBNO 
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Roadmap 

• Pseudo-PR-Tree 

– Has the desired                            worst-case guarantee 

– Not a real R-tree 

• Transform a pseudo-PR-Tree into a PR-tree 

– A real R-tree 

– Maintain the worst-case guarantee 

• Experiments 

– PR-tree 

– Hilbert R-tree (2D and 4D) 

– TGS-R-tree 

)//( BTBNO 



Pseudo-PR-Tree 
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1. Place B extreme rectangles from 

each direction in priority leaves 

2. Split remaining rectangles by 

xmin coordinates  

(round-robin using xmin, ymin, 

xmax, ymax– like a 4d kd-tree) 

3. Recursively build sub-trees 

  

Query in                        I/Os 

– O(T/B) nodes with priority leaf 

completely reported 

–                nodes with no priority 

leaf completely reported 



Pseudo-PR-Tree: Query Complexity 

• Nodes v visited where all rectangles in at least one of the priority 

leaves of v‟s parent are reported:  O(T/B) 

• Let v be a node visited but none of the priority leaves at its parent 

are reported completely, consider v‟s parent u 

Q 

2d 4d 

xmax = xmin(Q) 

ymin = ymax(Q) 



Pseudo-PR-Tree: Query Complexity 

• The cell in the 4d kd-tree of u is intersected 

by two different 3-dimensional hyper-

planes defined by sides of query Q 

• The intersection of each pair of such 3-

dimensional hyper-planes is a 2-

dimensional hyper-plane 

• Lemma: # of cells in a d-dimensional kd-

tree that intersect an axis-parallel f-

dimensional hyper-plane is O((N/B)f/d) 

• So, # such cells in a 4d kd-tree:  

 

• Total # nodes visited:  
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PR-tree from Pseudo-PR-Tree  



Query Complexity Remains Unchanged 

# nodes visited on leaf level BTBN // 

Next level: 22 //// BTBBNBN 

3223 ////// BTBBNBBNBN 



PR-Tree 

• PR-tree construction in                           I/Os 

– Pseudo-PR-tree in                           I/Os  

– Cost dominated by leaf level 

 

• Updates 

–  O(logB N) I/Os using known heuristics 

* Loss of worst-case query guarantee 

–                     I/Os using logarithmic method 

* Worst-case query efficiency maintained 

 

• Extending to d-dimensions 

– Optimal O((N/B)1-1/d + T/B) query 
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