CS6931 Database Seminar

Lecture 3: External Memory Indexing Structures (Contd)

• General planer range searching (in 2-dimensional space):

- kdB-tree: $O(\sqrt{N/B} + T/B)$ query, $O(\frac{N}{B})$ space

Other results

- Many other results for e.g.
 - Higher dimensional range searching
 - Range counting, range/stabbing max, and stabbing queries
 - Halfspace (and other special cases) of range searching
 - Queries on moving objects
 - Proximity queries (closest pair, nearest neighbor, point location)
 - Structures for objects other than points (bounding rectangles)

• Many heuristic structures in database community

Point Enclosure Queries

- Dual of planar range searching problem
 - Report all rectangles containing query point (x,y)

- Internal memory:
 - Can be solved in O(N) space and $O(\log N + T)$ time
 - Persistent interval tree

Rectangle Range Searching

• Report all rectangles intersecting query rectangle Q

• Often used in practice when handling complex geometric objects

- Store minimal bounding rectangles (MBR)

Rectangle Data Structures: R-Tree [Guttman, SIGMOD84]

- Most common practically used rectangle range searching structure
- Similar to B-tree
 - Rectangles in leaves (on same level)
 - Internal nodes contain MBR of rectangles below each child

• Note: Arbitrary order in leaves/grouping order

Rectangle Order

- Intuitively
 - Objects close together in same leaves
 - \Rightarrow small rectangles \Rightarrow queries descend in few subtrees

- Grouping in internal nodes?
 - Small area of MBRs
 - Small perimeter of MBRs
 - Little overlap among MBRs

R-tree Insertion Algorithm

- When not yet at a leaf (*choose subtree*):
 - Determine rectangle whose area increment after insertion is smallest (small area heuristic)
 - Increase this rectangle if necessary and recurse
- At a leaf:
 - Insert if room, otherwise *Split Node* (while trying to minimize area)

Linear Split Heuristic

- Determine the furthest pair R_1 and R_2 : the *seeds* for sets S_1 and S_2
- While not all MBRs distributed
 - Add next MBR to the set whose MBR increases the least

Quadratic Split Heuristic

- Determine R1 and R2 with largest *area*(MBR of R1 and R2)*area*(R1) - *area*(R2): the *seeds* for sets S1 and S2
- While not all MBRs distributed
 - Determine of every not yet distributed rectangle R_i:
 - d_1 = area increment of $S_1 \cup R_j$
 - d_2 = area increment of $S_2 \cup R_j$
 - Choose Ri with maximal
 |d₁-d₂| and add to the set with smallest area increment

R-tree Deletion Algorithm

- Find the leaf (node) and delete object; determine new (possibly smaller) MBR
- If the node is too empty:
 - Delete the node recursively at its parent
 - Insert all entries of the deleted node into the R-tree

R*-trees [Beckmann et al. SIGMOD90]

- Why try to minimize area?
 - Why not overlap, perimeter,...

- R*-tree:
 - Better heuristics for *Choose Subtree* and *Split Node*

R-Tree Variants

- Many, many R-tree variants (heuristics) have been proposed
- Often bulk-loaded R-trees are used
 - Much faster than repeated insertions
 - Better space utilization
 - Can optimize more "globally"
 - Can be updated using previous update algorithms

How to Build an R-Tree

- Repeated insertions
 - [Guttman84]
 - R⁺-tree [Sellis et al. 87]
 - R*-tree [Beckmann et al. 90]
- Bulkloading
 - Hilbert R-Tree [Kamel and Faloutos 94]
 - Top-down Greedy Split [Garcia et al. 98]
 - Advantages:
 - * Much faster than repeated insertions
 - * Better space utilization
 - * Usually produce R-trees with higher quality

R-Tree Variant: Hilbert R-Tree

Hilbert Curve

- To build a Hilbert R-Tree (cost: $O(N/B \log_{M/B} N)$ I/Os)
 - Sort the rectangles by the Hilbert values of their centers
 - Build a B-tree on top

Z-ordering

- Basic assumption: Finite precision in the representation of each co-ordinate, K bits (2^K values)
- The address space is a square (<u>image</u>) and represented as a 2^K x 2^K array
- Each element is called a <u>pixel</u>

Z-ordering

Impose a linear ordering on the pixels of the image → 1 dimensional problem

$$Z_A = \text{shuffle}(x_A, y_A) = \text{shuffle}("01", "11")$$

= 0111 = (7)₁₀
 $Z_B = \text{shuffle}("01", "01") = 0011$

Z-ordering

- Given a point (x, y) and the precision K find the pixel for the point and then compute the z-value
- Given a set of points, use a B+-tree to index the z-values
- A range (rectangular) query in 2-d is mapped to a set of ranges in 1-d

Handling Regions

- A region breaks into one or more pieces, each one with different z-value
- We try to minimize the number of pieces in the representation: precision/space overhead trade-off

$$Z_{R1} = 0010 = (2)$$

 $Z_{R2} = 1000 = (8)$

 $Z_{G} = 11$

("11" is the common prefix)

Z-ordering for Regions

- Break the space into 4 equal quadrants: <u>level-1</u> blocks
- Level-i block: one of the four equal quadrants of a level-(i-1) block
- Pixel: level-K blocks, image level-0 block
- For a level-i block: all its pixels have the same prefix up to i-1 bits; the z-value of the block

Hilbert Curve

- We want points that are close in 2d to be close in the 1d
- Note that in 2d there are 4 neighbors for each point where in 1d only 2.
- Z-curve has some "jumps" that we would like to avoid
- Hilbert curve avoids the jumps : recursive definition

Hilbert Curve- example

- It has been shown that in general Hilbert is better than the other space filling curves for retrieval [Jag90]
- Hi (order-i) Hilbert curve for $2^{i}x2^{i}$ array

R-trees - variations

R-trees - variations

- A: plane-sweep on HILBERT curve!
- In fact, it can be made dynamic (how?), as well as to handle regions (how?)

R-trees - variations

- Dynamic ('Hilbert R-tree):
 - each point has an 'h'-value (hilbert value)
 - insertions: like a B-tree on the h-value
 - but also store MBR, for searches

Theoretical Musings

- None of existing R-tree variants has worst-case query performance guarantee!
 - In the worst-case, a query can visit all nodes in the tree even when the output size is zero
- R-tree is a generalized kdB-tree, so can we achieve $O(\sqrt{N/B} + T/B)$?
- Priority R-Tree [Arge, de Berg, Haverkort, and Yi, SIGMOD04]
 - The first R-tree variant that answers a query by visiting $O(\sqrt{N/B} + T/B)$ nodes in the worst case
 - * *T*: Output size
 - It is optimal!

* Follows from the kdB-tree lower bound.

Roadmap

- Pseudo-PR-Tree
 - Has the desired $O(\sqrt{N/B} + T/B)$ worst-case guarantee
 - Not a real R-tree
- Transform a pseudo-PR-Tree into a PR-tree
 - A real R-tree
 - Maintain the worst-case guarantee
- Experiments
 - PR-tree
 - Hilbert R-tree (2D and 4D)
 - TGS-R-tree

Pseudo-PR-Tree

- 1. Place *B* extreme rectangles from each direction in priority leaves
- 2. Split remaining rectangles by x_{\min} coordinates (round-robin using x_{\min} , y_{\min} , x_{\max} , y_{\max} like a 4d kd-tree)
- 3. Recursively build sub-trees
- Query in $O(\sqrt{N/B} + T/B)$ I/Os – O(T/B) nodes with priority leaf completely reported – $O(\sqrt{N/B})$ nodes with no priority leaf completely reported

Pseudo-PR-Tree: Query Complexity

- Nodes *v* visited where all rectangles in at least one of the priority leaves of *v*'s parent are reported: O(T/B)
- Let *v* be a node visited but none of the priority leaves at its parent are reported completely, consider *v*'s parent *u*

Pseudo-PR-Tree: Query Complexity

- The cell in the 4d kd-tree of *u* is intersected by two different 3-dimensional hyperplanes defined by sides of query *Q*
- The intersection of each pair of such 3dimensional hyper-planes is a 2dimensional hyper-plane
- Lemma: # of cells in a *d*-dimensional kdtree that intersect an axis-parallel *f*dimensional hyper-plane is O((*N/B*)^{*f/d*})
- So, # such cells in a 4d kd-tree: $O(\sqrt{N/B})$
- Total # nodes visited: $O(\sqrt{N/B} + T/B)$

PR-Tree

• PR-tree construction in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os - Pseudo-PR-tree in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os

– Cost dominated by leaf level

- Updates
 - $O(\log_B N)$ I/Os using known heuristics
 - * Loss of worst-case query guarantee
 - $O(\log_B^2 N)$ I/Os using logarithmic method * Worst-case query efficiency maintained
- Extending to *d*-dimensions

- Optimal $O((N/B)^{1-1/d} + T/B)$ query