CS6931 Database Seminar

Lecture 3: External Memory Indexing Structures (Contd)

Until now: Data Structures

- General planer range searching (in 2-dimensional space):
- kdB-tree: $O(\sqrt{N / B}+T / B)$ query, $O\left(\frac{N}{B}\right)$ space

Other results

- Many other results for e.g.
- Higher dimensional range searching
- Range counting, range/stabbing max, and stabbing queries
- Halfspace (and other special cases) of range searching
- Queries on moving objects
- Proximity queries (closest pair, nearest neighbor, point location)
- Structures for objects other than points (bounding rectangles)
- Many heuristic structures in database community

Point Enclosure Queries

- Dual of planar range searching problem
- Report all rectangles containing query point (x, y)

- Internal memory:
- Can be solved in $\mathrm{O}(N)$ space and $O(\log N+T)$ time
- Persistent interval tree

Rectangle Range Searching

- Report all rectangles intersecting query rectangle Q

- Often used in practice when handling complex geometric objects
- Store minimal bounding rectangles (MBR)

Rectangle Data Structures: R-Tree [Guttman, sigmods4]

- Most common practically used rectangle range searching structure
- Similar to B-tree
- Rectangles in leaves (on same level)
- Internal nodes contain MBR of rectangles below each child

- Note: Arbitrary order in leaves/grouping order

Example

Example

Example

Example

- (Point) Query:
- Recursively visit relevant nodes

Query Efficiency

- The fewer rectangles intersected the better

Rectangle Order

- Intuitively
- Objects close together in same leaves \Rightarrow small rectangles \Rightarrow queries descend in few subtrees

- Grouping in internal nodes?
- Small area of MBRs
- Small perimeter of MBRs
- Little overlap among MBRs

R-tree Insertion Algorithm

- When not yet at a leaf (choose subtree):
- Determine rectangle whose area increment after insertion is smallest (small area heuristic)
- Increase this rectangle if necessary and recurse

- At a leaf:
- Insert if room, otherwise Split Node (while trying to minimize area)

Node Split

Linear Split Heuristic

- Determine the furthest pair R_{1} and R_{2} : the seeds for sets S_{1} and S_{2}
- While not all MBRs distributed
- Add next MBR to the set whose MBR increases the least

Quadratic Split Heuristic

- Determine R1 and R2 with largest area(MBR of R1 and R2)$\operatorname{area}(\mathrm{R} 1)-\operatorname{area}(\mathrm{R} 2)$: the seeds for sets S 1 and S 2
- While not all MBRs distributed
- Determine of every not yet distributed rectangle R_{j} : $\mathrm{d}_{1}=$ area increment of $\mathrm{S}_{1} \cup \mathrm{R}_{\mathrm{j}}$ $\mathrm{d}_{2}=$ area increment of $\mathrm{S}_{2} \cup \mathrm{R}_{\mathrm{j}}$
- Choose Ri with maximal $\left|\mathrm{d}_{1}-\mathrm{d}_{2}\right|$ and add to the set with smallest area increment

R-tree Deletion Algorithm

- Find the leaf (node) and delete object; determine new (possibly smaller) MBR
- If the node is too empty:
- Delete the node recursively at its parent
- Insert all entries of the deleted node into the R-tree

R*_trees [Beckmann et al. SIGMOD90]

- Why try to minimize area?
- Why not overlap, perimeter,...

- R*-tree:
- Better heuristics for Choose Subtree and Split Node

R-Tree Variants

- Many, many R-tree variants (heuristics) have been proposed
- Often bulk-loaded R-trees are used
- Much faster than repeated insertions
- Better space utilization
- Can optimize more "globally"
- Can be updated using previous update algorithms

How to Build an R-Tree

- Repeated insertions
- [Guttman84]
- R^{+}-tree [Sellis et al. 87]
- R*-tree [Beckmann et al. 90]
- Bulkloading
- Hilbert R-Tree [Kamel and Faloutos 94]
- Top-down Greedy Split [Garcia et al. 98]
- Advantages:
* Much faster than repeated insertions
* Better space utilization
* Usually produce R-trees with higher quality

R-Tree Variant: Hilbert R-Tree

Hilbert Curve

- To build a Hilbert R-Tree (cost: $\mathrm{O}\left(N / B \log _{M / B} N\right)$ I/Os)
- Sort the rectangles by the Hilbert values of their centers
- Build a B-tree on top

Z-ordering

- Basic assumption: Finite precision in the representation of each co-ordinate, K bits (2^{K} values)
- The address space is a square (image) and represented as a $2^{\mathrm{K}} \times 2^{\mathrm{K}}$ array
- Each element is called a pixel

Z-ordering

- Impose a linear ordering on the pixels of the image $\rightarrow 1$ dimensional problem

Z-ordering

- Given a point (x, y) and the precision K find the pixel for the point and then compute the z -value
- Given a set of points, use a B+-tree to index the z-values
- A range (rectangular) query in 2-d is mapped to a set of ranges in 1d

Queries

- Find the z-values that contained in the query and then the ranges

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{A}} \rightarrow \text { range }[4,7] \\
& \mathrm{Q}_{\mathrm{B}} \rightarrow \text { ranges }[2,3] \text { and }[8,9]
\end{aligned}
$$

Handling Regions

- A region breaks into one or more pieces, each one with different z-value
- We try to minimize the number of pieces in the representation: precision/space overhead trade-off

$$
\begin{gathered}
\mathrm{Z}_{\mathrm{R} 1}=0010=(2) \\
\mathrm{Z}_{\mathrm{R} 2}=1000=(8) \\
\\
\mathrm{Z}_{\mathrm{G}}=11
\end{gathered}
$$

(" 11 " is the common prefix)

Z-ordering for Regions

- Break the space into 4 equal quadrants: level-1 blocks
- Level-i block: one of the four equal quadrants of a level-(i-1) block
- Pixel: level-K blocks, image level-0 block
- For a level-i block: all its pixels have the same prefix up to i-1 bits; the z-value of the block

Hilbert Curve

- We want points that are close in 2 d to be close in the 1 d
- Note that in 2d there are 4 neighbors for each point where in 1d only 2.
- Z-curve has some "jumps" that we would like to avoid
- Hilbert curve avoids the jumps : recursive definition

Hilbert Curve- example

- It has been shown that in general Hilbert is better than the other space filling curves for retrieval [Jag90]
- Hi (order-i) Hilbert curve for $2^{\mathrm{i}} \mathrm{x}^{\mathrm{i}}$ array

H1

H2

$\mathrm{H}(\mathrm{n}+1)$

R-trees - variations

- A: plane-sweep on HILBERT curve!

R-trees - variations

- A: plane-sweep on HILBERT curve!
- In fact, it can be made dynamic (how?), as well as to handle regions (how?)

R-trees - variations

- Dynamic ('Hilbert R-tree):
- each point has an 'h'-value (hilbert value)
- insertions: like a B-tree on the hvalue
- but also store MBR, for searches

R-trees - variations

- Data structure of a node?
\sim B-tree

R-trees - variations

- Data structure of a node?
~ R-tree

Theoretical Musings

- None of existing R-tree variants has worst-case query performance guarantee!
- In the worst-case, a query can visit all nodes in the tree even when the output size is zero
- R-tree is a generalized kdB-tree, so can we achieve $O(\sqrt{N / B}+T / B)$?
- Priority R-Tree [Arge, de Berg, Haverkort, and Yi, SIGMOD04]
- The first R-tree variant that answers a query by visiting $O(\sqrt{N / B}+T / B)$ nodes in the worst case
* T : Output size
- It is optimal!
* Follows from the kdB-tree lower bound.

Roadmap

- Pseudo-PR-Tree
- Has the desired $O(\sqrt{N / B}+T / B)$ worst-case guarantee
- Not a real R-tree
- Transform a pseudo-PR-Tree into a PR-tree
- A real R-tree
- Maintain the worst-case guarantee
- Experiments
- PR-tree
- Hilbert R-tree (2D and 4D)
- TGS-R-tree

Pseudo-PR-Tree

1. Place B extreme rectangles from each direction in priority leaves
2. Split remaining rectangles by $x_{\text {min }}$ coordinates (round-robin using $x_{\text {min }}, y_{\text {min }}$, $x_{\text {max }}, y_{\text {max }}$ - like a 4 d kd-tree)
3. Recursively build sub-trees

Query in $O(\sqrt{N / B}+T / B)$ I/Os
$-O(T / B)$ nodes with priority leaf completely reported
$-O(\sqrt{N / B})$ nodes with no priority leaf completely reported

Pseudo-PR-Tree: Query Complexity

- Nodes v visited where all rectangles in at least one of the priority leaves of v 's parent are reported: $\mathrm{O}(T / B)$
- Let v be a node visited but none of the priority leaves at its parent are reported completely, consider v 's parent u

Pseudo-PR-Tree: Query Complexity

- The cell in the 4 d kd-tree of u is intersected by two different 3-dimensional hyperplanes defined by sides of query Q
- The intersection of each pair of such 3dimensional hyper-planes is a 2dimensional hyper-plane
- Lemma: \# of cells in a d-dimensional kdtree that intersect an axis-parallel f dimensional hyper-plane is $\mathrm{O}\left((N / B)^{f / d}\right)$

- So, \# such cells in a 4d kd-tree: $O(\sqrt{N / B})$
- Total \# nodes visited: $O(\sqrt{N / B}+T / B)$

PR-tree from Pseudo-PR-Tree

Query Complexity Remains Unchanged

$\sqrt{N / D^{3}}+\sqrt{N / B^{2} / B+\sqrt{N / E / B}+T / B^{3}}$
Next level: $\sqrt{N \times B^{2}}+\sqrt{N / B / B+T / B^{2}}$
\# nodes visited on leaf level $\sqrt{N / B}+T / B$

PR-Tree

- PR-tree construction in $O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right) \mathrm{I} / \mathrm{Os}$
- Pseudo-PR-tree in $O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right)$ I/Os
- Cost dominated by leaf level
- Updates
- $O\left(\log _{B} N\right)$ I/Os using known heuristics * Loss of worst-case query guarantee
- $O\left(\log _{B}^{2} N\right)$ I/Os using logarithmic method * Worst-case query efficiency maintained
- Extending to d-dimensions
- Optimal $O\left((N / B)^{1-1 / d}+T / B\right)$ query

