CS6931 Database Seminar

Lecture 2: External Memory Indexing Structures

External Memory Data Structures

- Names:
 - I/O-efficient data structures
 - Disk-based data structures (index structures)
 used in DB
 - Disk-resilient data structures (index structures) used in DB
 - Secondary indexes

used in DR

• Other Data structures

Mainly used in algorithms

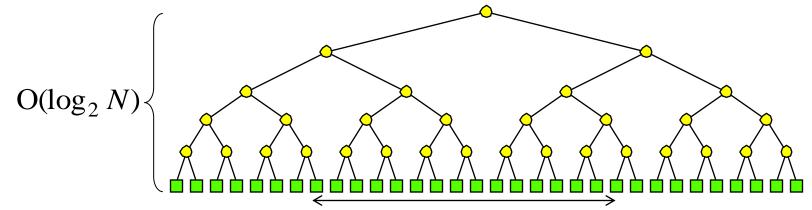
- Queue, stack
 - * O(N/B) space, O(1/B) push, O(1/B) pop
- Priority queue
 - * O(N/B) space, O(1/B $\cdot \log_{M/B}$ N/B) insert, delete-max

External Memory Data Structures

- General-purpose data structures
 - Space: linear or near-linear (very important)
 - Query: logarithmic in B or 2 for any query (very important)
 - Update: logarithmic in B or 2 (important)
- In some sense, more useful than I/O-algorithms
 - Structure stored in disk most of the time
 - DB typically maintains many data structures for many different data sets: can't load all of them to memory
 - Nearly all index structures in large DB are disk based

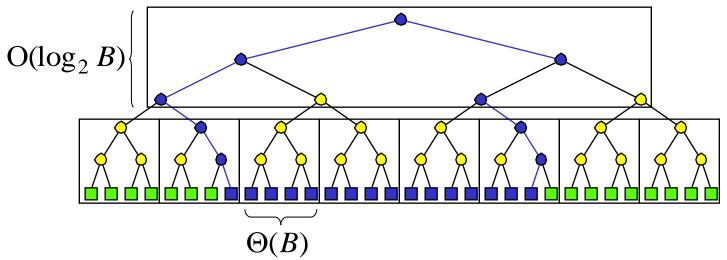
External Search Trees

- Binary search tree:
 - Standard method for search among N elements
 - We assume elements in leaves



- Search traces at least one root-leaf path
- If nodes stored arbitrarily on disk
 - \Rightarrow Search in $O(\log_2 N)$ I/Os
 - \Rightarrow Rangesearch in $O(\log_2 N + T)$ I/Os

External Search Trees



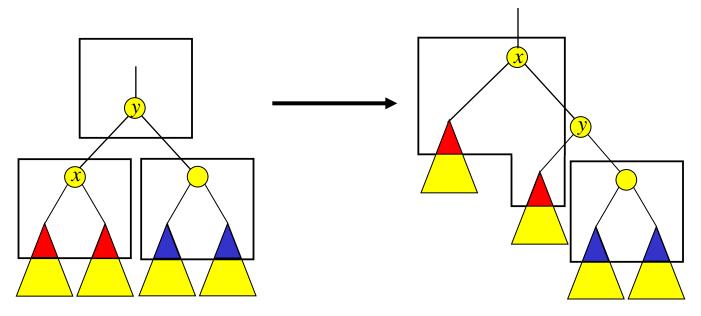
- Bottom-up BFS blocking:
 - Block height $O(\log_2 N) / O(\log_2 B) = O(\log_B N)$
 - Output elements blocked↓

Range query in $O(\log_B N + T/B)I/Os$

• Optimal: O(N/B) space and $O(\log_B N + T/B)$ query

External Search Trees

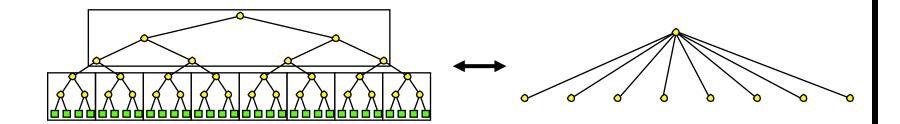
- Maintaining BFS blocking during updates?
 - Balance normally maintained in search trees using rotations



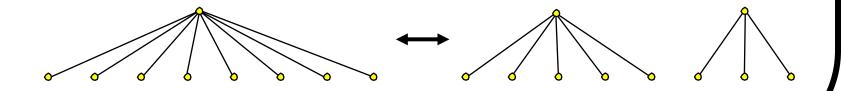
- Seems very difficult to maintain BFS blocking during rotation
 - Also need to make sure output (leaves) is blocked!

B-trees

• BFS-blocking naturally corresponds to tree with fan-out $\Theta(B)$

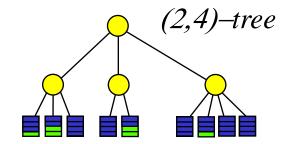


- B-trees balanced by allowing node degree to vary
 - Rebalancing performed by splitting and merging nodes



(a,b)-tree

- T is an (a,b)-tree $(a \ge 2$ and $b \ge 2a-1)$
 - All leaves on the same level
 (contain between a and b elements)
 - Except for the root, all nodes have degree between a and b
 - Root has degree between 2 and b



• (a,b)-tree uses linear space and has height $O(\log_a N)$ ψ

Choosing $a,b = \Theta(B)$ each node/leaf stored in one disk block ψ

O(N/B) space and $O(\log_B N + T/B)$ query

(a,b)-Tree Insert

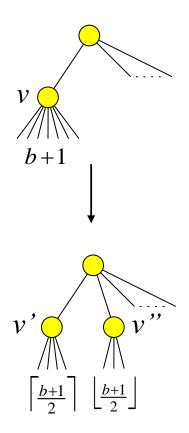
• Insert:

Search and insert element in leaf vDO v has b+1 elements/children

Split v:

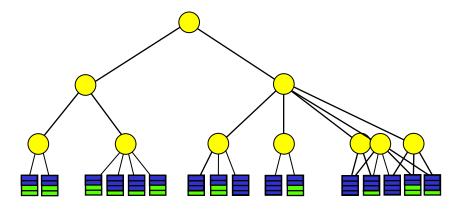
make nodes v and v with $\left\lceil \frac{b+1}{2} \right\rceil \le b$ and $\left\lfloor \frac{b+1}{2} \right\rfloor \ge a$ elements

insert element (ref) in parent(v)(make new root if necessary) v=parent(v)



• Insert touch $O(\log_a N)$ nodes

(a,b)-Tree Insert



(a,b)-Tree Delete

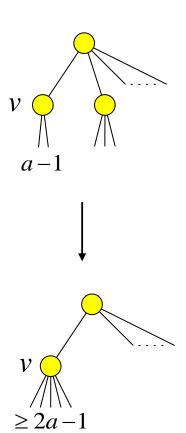
• Delete:

Search and delete element from leaf vDO v has a-l elements/children

Fuse v with sibling v':

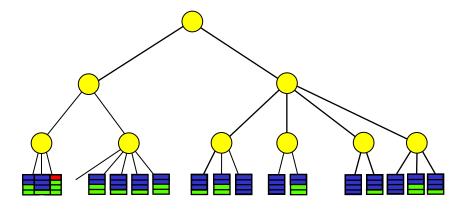
move children of v' to vdelete element (ref) from parent(v)(delete root if necessary)

If v has >b (and $\leq a+b-1<2b$) children split v v=parent(v)



Delete touch $O(\log_a N)$ nodes

(a,b)-Tree Delete



External Searching: B-Tree

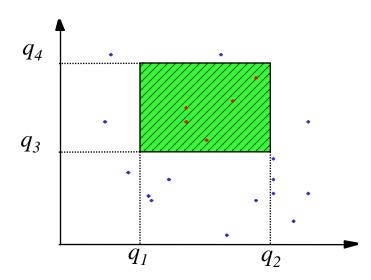


- Each node (except root) has fan-out between B/2 and B
- Size: O(N/B) blocks on disk
- Search: $O(log_B N)$ I/Os following a root-to-leaf path
- Insertion and deletion: $O(log_B N)$ I/Os

Summary/Conclusion: B-tree

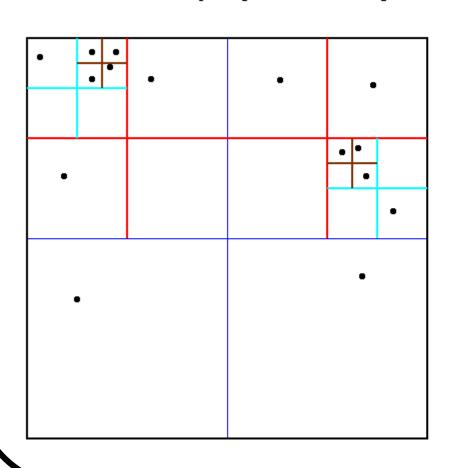
- B-trees: (a,b)-trees with $a,b = \Theta(B)$
 - -O(N/B) space
 - $-O(\log_B N + T/B)$ query
 - $-O(\log_R N)$ update
- B-trees with elements in the leaves sometimes called B⁺-tree
 - Now B-tree and B+tree are synonyms
- Construction in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
 - Sort elements and construct leaves
 - Build tree level-by-level bottom-up

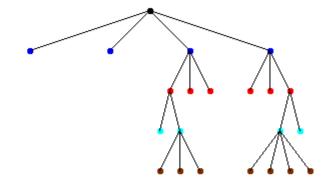
2D Range Searching



Quadtree

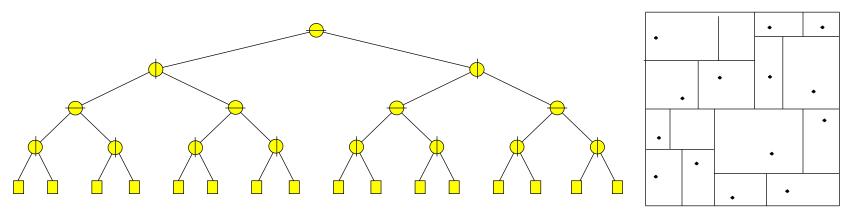
Adaptive quadtree where no square contains more than ${\bf 1}$ particle





- No worst-case bound!
- Hard to block!

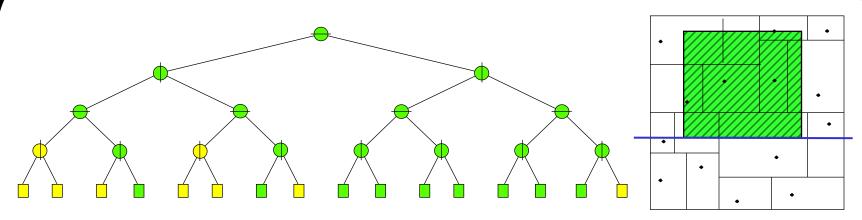
kd-tree



• kd-tree:

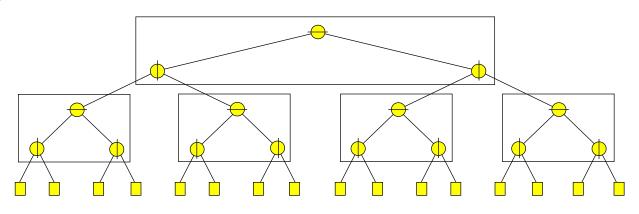
- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf

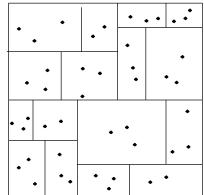
Linear space and logarithmic height



- Query
 - Recursively visit nodes corresponding to regions intersecting query
 - Report point in trees/nodes completely contained in query
- Query analysis
 - Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
 - Query covers T regions
 - $\Rightarrow O(\sqrt{N} + T)$ I/Os worst-case

kdB-tree

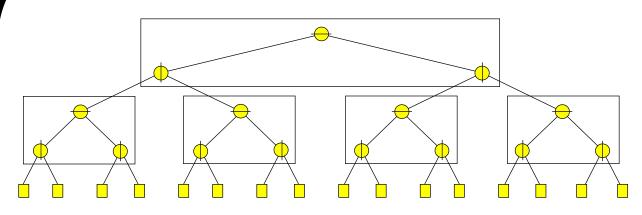


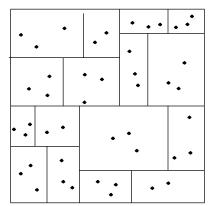


- kdB-tree:
 - Bottom-up BFS blocking
 - Same as B-tree
- Query as before
 - Analysis as before but each region now contains $\Theta(B)$ points

$$O(\sqrt{N/B} + T/B)$$
 I/O query

Construction of kdB-tree

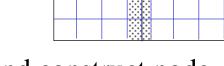




- Simple $O(\frac{N}{B}\log_2 \frac{N}{B})$ algorithm
 - Find median of y-coordinates (construct root)
 - Distribute point based on median
 - Recursively build subtrees
 - Construct BFS-blocking top-down (can compute the height in advance)
- Idea in improved $O(\frac{N}{B}\log_{M_B} \frac{N}{B})$ algorithm
 - Construct $\log \sqrt{M/B}$ levels at a time using O(N/B) I/Os

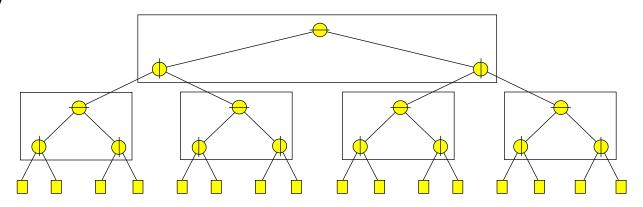
Construction of kdB-tree

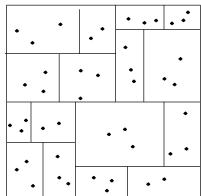
- Sort N points by x- and by y-coordinates using $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os
- Building $\log \sqrt{M/B}$ levels $(\sqrt{M/B} \text{ nodes})$ in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B}$ by $\sqrt{M/B}$ grid with $\sqrt[N]{M/B}$ points in each slab
 - 2. Count number of points in each grid cell and store in memory
 - 3. Find slab s with median x-coordinate



- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median *x*-coordinate using grid (step 3)
- \Rightarrow Grid grows to $\frac{M}{B} + \sqrt{\frac{M}{B}} \cdot \sqrt{\frac{M}{B}} = \Theta(\frac{M}{B})$ during algorithm
- \Rightarrow Each node constructed in $O(N/(\sqrt{M/B} \cdot B))$ I/Os

kdB-tree





- kdB-tree:
 - Linear space
 - Query in $O(\sqrt{N/B} + T/B)$ I/Os
 - Construction in O(sort(N)) I/Os
 - Height $O(\log_B N)$
- Dynamic?
 - Difficult to do splits/merges or rotations ...