CS 6931 Database Seminar

Lecture 1: Basic Operators in Large Data

Massive Data

- Massive datasets are being collected everywhere
- Storage management software is billion-\$ industry

More New Information Over Next 2
Years Than in All Previous History

Examples (2002):

- Phone: AT\&T 20TB phone call database, wireless tracking
- Network: AT\&T IP backbone generates 500 GB per day
- Consumer: WalMart 70TB database, buying patterns
- WEB: Web crawl of 200M pages and 2000M links, Akamai stores 7 billion clicks per day
- Geography: NASA satellites generate 1.2 TB per day

Example: LIDAR Terrain Data

- Massive (irregular) point sets ($1-10 \mathrm{~m}$ resolution)
- Becoming relatively cheap and easy to collect
- Appalachian Mountains between 50GB and 5TB
- Exceeds memory limit and needs to be stored on disk

Example: Network Flow Data

- AT\&T IP backbone generates 500 GB per day
- Gigascope: A data stream management system
- Compute certain statistics

- Can we do computation without storing the data?

Random Access Machine Model

- Standard theoretical model of computation:
- Infinite memory
- Uniform access cost
- Simple model crucial for success of computer industry

Hierarchical Memory

- Modern machines have complicated memory hierarchy
- Levels get larger and slower further away from CPU
- Data moved between levels using large blocks

Slow I/O

- Disk access is 10^{6} times slower than main memory access read/write arm

"The difference in speed between modern CPU and disk technologies is analogous to the difference in speed in sharpening a pencil using a sharpener on one's desk or by taking an airplane to the other side of the world and using a sharpener on someone else's desk. " (D. Comer)
- Disk systems try to amortize large access time transferring large contiguous blocks of data (8-16Kbytes)
- Important to store/access data to take advantage of blocks (locality)

Scalability Problems

- Most programs developed in RAM-model
- Run on large datasets because OS moves blocks as needed

- Moderns OS utilizes sophisticated paging and prefetching strategies
- But if program makes scattered accesses even good OS cannot take advantage of block access

Scalability problems!

Solution 1: Buy More Memory

- Expensive
- (Probably) not scalable
- Growth rate of data is higher than the growth of memory

Solution 2: Cheat! (by random sampling)

- Provide approximate solution for some problems
- average, frequency of an element, etc.
- What if we want the exact result?
- Many problems can't be solved by sampling
- maximum, and all problems mentioned later

Solution 3: Using the Right Computation Model

- External Memory Model
- Streaming Model
- Uncertain Data Model

External Memory Model

$N=$ \# of items in the problem instance
$B=\#$ of items per disk block
$M=\#$ of items that fit in main memory
$T=$ \# of items in output
I/O: Move block between memory and disk

We assume (for convenience) that $M>B^{2}$

Fundamental Bounds

Internal

- Scanning:
- Sorting:
- Permuting
- Searching: $\log _{2} N$

External

$$
\begin{gathered}
\frac{N}{B} \\
\frac{N}{B} \log _{M / B} \frac{N}{B} \\
\min \left\{N, \frac{N}{B} \log _{M / B} \frac{N}{B}\right\} \\
\log _{B} N
\end{gathered}
$$

- Note:
- Linear I/O: $O(N / B)$
- Permuting not linear
- Permuting and sorting bounds are equal in all practical cases
- B factor VERY important: $\frac{N}{B}<\frac{N}{B} \log _{M / B} \frac{N}{B} \ll N$
- Cannot sort optimally with search tree

Queues and Stacks

- Queue:
- Maintain push and pop blocks in main memory

\Downarrow
$O(1 / B)$ Push/Pop operations
- Stack:
- Maintain push/pop block in main memory

Puzzle \#1: Majority Counting

b	a	e	c	a	d	a	a	d	a	a	e	a	b	a	a	f	a	g	b

- A huge file of characters stored on disk
- Question: Is there a character that appears > 50\% of the time
- Solution 1: sort + scan
- A few passes $\left(\mathrm{O}\left(\log _{M / B} N\right)\right.$): will come to it later
- Solution 2: divide-and-conquer
- Load a chunk in to memory: N / M chunks
- Count them, return majority
- The overall majority must be the majority in $>50 \%$ chunks
- Iterate until < M
- Very few passes $\left(\mathrm{O}\left(\log _{M} N\right)\right.$), geometrically decreasing

Solution 3: O(1) memory, 2 passes (answer to be posted later)

Sorting

- <M/B sorted lists (queues) can be merged in $O(N / B)$ I/Os

M / B blocks in main memory

Sorting

- Merge sort:
- Create N / M memory sized sorted lists
- Repeatedly merge lists together $\Theta(M / B)$ at a time

$O\left(\log _{M / B} \frac{N}{M}\right)$ phases using $O(N / B)$ I/Os each $\Rightarrow O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right)$ I/Os

2-Way Sort: Requires 3 Buffers

- Phase 1: PREPARE.
- Read a page, sort it, write it.
- only one buffer page is used
- Phase $2,3, \ldots$, etc.: MERGE:
- three buffer pages used.

Two-Way External Merge Sort

Idea: Divide and conquer: sort subfiles and merge into larger sorts

Two-Wav External Merge Sort

- Costs for pass : all pages
- \# of passes : height of tree
- Total cost : product of above

Two-Way External Merge Sort

- Each pass we read + write each page in file.
- N / B pages in file $=>2 \mathrm{~N} / \mathrm{B}$
- Number of passes

$$
=\left\lceil\log _{2} N / B\right\rceil+1
$$

- So total cost is:
$2 N / B\left(\left\lceil\log _{2} N / B\right\rceil+1\right)$

External Merge Sort

- What if we had more buffer pages?
- How do we utilize them wisely?
\rightarrow Two main ideas!

Phase 1 : Prepare

- Construct as large as possible starter lists.

Phase 2: Merge

Compose as many sorted sublists into one long sorted list.

General External Merge Sort

- To sort a file with N / B pages using M / B buffer pages:
- Pass 0: use M/B buffer pages.

Produce sorted runs of M / B pages each. $\lceil N / B\rceil$

- Pass $1,2, \ldots$, etc.: merge $\mathrm{M} / B-1$ runs.

Disk

Selection Algorithm

- In internal memory (deterministic) quicksort split element (median) found using linear time selection
- Selection algorithm: Finding i 'th element in sorted order

1) Select median of every group of 5 elements
2) Recursively select median of $\sim N / 5$ selected elements
3) Distribute elements into two lists using computed median
4) Recursively select in one of two lists

- Analysis:
- Step 1 and 3 performed in $O(N / B)$ I/Os.
- Step 4 recursion on at most $\sim \frac{7}{10} N$ elements
$\Rightarrow T(N)=O(N / B)+T(N / 5)+T(7 N / 10)=O(N / B) \mathrm{I} / \mathrm{Os}$

Toy Experiment: Permuting

- Problem:
- Input: N elements out of order: 6, 7, 1, 3, 2, 5, 10, 9, 4, 8
* Each element knows its correct position
- Output: Store them on disk in the right order
- Internal memory solution:
- Just scan the original sequence and move every element in the right place!
- $\mathrm{O}(N)$ time, $\mathrm{O}(N)$ I/Os
- External memory solution:
- Use sorting
- $\mathrm{O}(N \log N)$ time, $O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right)$

Takeaways

- Need to be very careful when your program's space usage exceeds physical memory size
- If program mostly makes highly localized accesses
- Let the OS handle it automatically
- If program makes many non-localized accesses
-Need I/O-efficient techniques
- Three common techniques (recall the majority counting puzzle):
-Convert to sort + scan
- Divide-and-conquer
- Other tricks

