

XML Data Management – An OverviewXML Data Management – An Overview

Swetha Machanavajhala

Database Seminar

Spring 2012 University of Utah

Structured DataStructured Data
Spreadsheets

Relational Databases

➢ Data resides in fixed fields within a
record or file.

➢ Has a fixed schema.

➢ Contains information stored in columns
and rows.

➢ Has an identifiable structure understood
by computers.

➢ Well organized for human readers.

Unstructured DataUnstructured Data
Web Pages

Word Processing DocumentsBlogs

➢ Currently most of the data are unstructured.

➢ Data has minimal structure like “text” in <Title> vs text in <Body>

➢ Does not fit well into relational tables.

Why XML?Why XML?
Current data is in the form of Web Documents.

Data from different sources contain different schema. Cannot model this data using
RDBMS.

- XML is known for its flexible schema

Need to structure this data such that it can be fit into a RDBMS.

Need to handle, store, query and exchange data across different systems and architectures.

- Semi structured / Unstructured data consists of data objects whose attributes are not
known in advance.

- XML contains self-describing tags that can structure these data objects.

- These tags describe “what” data represent – Useful for sharing data between
applications.

- Not easy to query such data using SQL. So we go for pure XML databases.

Example of an XML DocumentExample of an XML Document
<Presenters>

<Presenter @name = “Swetha”>

<topic> XML Data Management </topic>
</Presenter>

<Presenter>

<paper>
<topic> Map Reduce </topic>
<name> XYZ </name>

</paper>
</Presenter>

</Presenters>

[Root Element node]

[Element node]

[Attribute Node]

[Ancestors of “name” element
→ <Paper> , <Presenter> and <Presenters>]

[Descendants of “Presenter” element
→ <Paper> , <topic> and <name>]

Basic Model: TreeBasic Model: Tree
Presenters

Presenter Presenter

@name topic
Paper

Swetha
XML Data
Management

topic name

Map Reduce XYZ

Representing Primary and Foreign KeysRepresenting Primary and Foreign Keys
ID attribute uniquely identifies an element

IDREF attribute refers to other elements identified by ID attributes.

<Presenters>
<Presenter ID = “1”>

<paper>
<topic> XML Data Management </topic>
<name> Swetha </name>

</paper>
</Presenter>
<Presenter ID = “2” Friend_Of IDREF = “1”>

<paper>
<topic> Map Reduce </topic>
<name> XYZ </name>

</paper>
</Presenter>

</Presenters>

Extended Model: Directed Acyclic GraphsExtended Model: Directed Acyclic Graphs
Presenters

Presenter 1 Presenter 2

@name topic
Paper

Swetha

topic name

Map Reduce XYZ

XML Data
Management

Friend_of

XML Queries – Relational ApproachXML Queries – Relational Approach
1. XPath
Based on structural hierarchical navigation through elements and attributes in an XML
document.

Selecting Nodes:

2 commonly used axes:

'/' - Child axis → “A/B”

 Select all B-tagged child nodes of A-tagged nodes.

'//' - Descendant axis → “A//B”

 Select all B-tagged descendant nodes of A-tagged nodes

XPath – An ExampleXPath – An Example
//Presenter/topics → returns all topics under the element node of
“Presenter”

→ Path Pattern

/Presenter[@name = Swetha]/topic → returns the topic of presenter named
Swetha.

[Predicate]

XPath query with a predicate represents a “Twig Pattern” → Returns
exactly one output node!

XML Queries – Relational Approach (contd.)XML Queries – Relational Approach (contd.)
2. Xquery
➢ Xquery for XML same as SQL for databases.

➢ Designed to query XML files and databases that appear as XML.

Composed Of:

For-Let-Where-Return (FLWR) clauses.

Usage:

➢ Search Web documents for relevant details.

➢ Extract information to use in a web service.

➢ Transform XML data to XHTML

XQuery – An ExampleXQuery – An Example
Select the topics of presenter named Swetha

We have the following path expression:

//Presenters/Presenter[@name = Swetha]/topic

FLWR equivalent of the above expression:

For $x in //Presenters/Presenter/topic
Where $x/name = “Swetha”
Return $x/topic

XML Queries – IR Style ApproachXML Queries – IR Style Approach
Information Retrieval – Style XML queries are used to query text-dense XML
documents.

Text-dense

Value elements in XML document involve long text.

In the previous examples, value elements are not text-dense.

Why IR-Style approach?

Need to search large texts that total in the order of billions to trillions of words.

Allows Ranked Retrieval → return the best answer to the query among many documents.

Database-style approach using Xpath and Xquery does not support the above.

Boolean IR QueriesBoolean IR Queries
Scenario: A collection of Shakespeare's Plays. Determine which play of Shakespeare
contain the words Brutus AND Caesar NOT Calpurnia.

Linear scan through the text → not a good option for large texts.

We need to index the documents in advance.

Done using Binary term – document Incidence Matrix where Terms are the indexed units.

Plays in
columnsWords

in rows

“Brutus” appears in Play
“Antony and Cleopatra”

Boolean IR Queries (contd.)Boolean IR Queries (contd.)
Solution to the query Brutus AND Caesar AND NOT Calpurnia

Consider the vectors for each of the terms.

110100 AND 110111 AND NOT(010000)

→ 110100 AND 110111 AND 101111 = 100100

Look up the incidence matrix for the result

Result → Antony and Cleopatra and Hamlet.

DB + IR QueriesDB + IR Queries
Enhances database-style XML queries like Xpath and Xquery with IR-style
characteristics.

Example, add “Contains” function to Xpath query as we have seen previously:

/Presenter[contains (“Databases” , “Swetha”]/ @name

Returns names of all presenters whose (child or descendant) subelements
contain approximate matches to keywords “Databases” and “Swetha”

Storing & Querying XML Data efficiently...Storing & Querying XML Data efficiently...
Approach 1: Relational Approach

Leverage RDBMS by mapping XML to Relational Tables.

Approach 2: Native Approach

Perform navigation, insertion, deletion and update operations using
optimized operators on a tree-structured data model.

1. XML Query Processing: Relational Approach1. XML Query Processing: Relational Approach
Main Idea:

● Shred XML documents into relational tables.
● Transform XML queries to SQL queries for querying the database.

How is this done?
● There are many approaches but we will look into 2 basic approaches.

➢ Basic Edge Approach
➢ Binary Approach

Basic Edge ApproachBasic Edge Approach
Key Idea:

● Assign an ID to every node of an XML tree.
● Store information about an edge in a row in Edge Table
● Edge Table representation:

Edge_Table(Source_ID , Ordinal Number , Target_ID , Label, Flag , Value)

[Source node in
the XML Tree]

[Order of outgoing
edge from Source]

[Target node to
which the current
node is pointing]

[Tag on the edge]

[Type of
target node]

[Value of
target node]

An Example... Step 1An Example... Step 1
1

Book
Assigning ID
to every node

2

653 4

Title Author Author
Year

“Databases” “Ramakrishnan” “Gerhke” “1999”

Step 2: Edge TableStep 2: Edge Table
Source ID Ordinal

Number Target ID Label Flag Value

1 1 2 Book Ref -

2 1 3 Title Val Databases

2 2 4 Author Val Ramakrishnan

2 3 5 Author Val Gerkhe

2 4 6 Year Val 1999

Step 3: Transform XML query to SQLStep 3: Transform XML query to SQL
SQL Query for “/Book[title = “Databases”]/year”

Select year, Value

From Edge Book, Edge title, Edge year

Where Book.label = 'book' and

 title.label = 'title' and

 year.label = 'year' and

 book.Source = 1 and

 book.Target = title.source and

 book.Target = year.source and

 title.Value = 'Databases'

[Edge Selection]

[Edge Joining]

Efficiency of Basic Edge ApproachEfficiency of Basic Edge Approach
➢ Helps in shredding XML data into relations.

➢ Can query the tables using SQL.

➢ However retrieving data for each edge in edge selection part can
lead to slow processing.

➢ Need to speed up the processing of this section.

Binary ApproachBinary Approach
➢ Pregroups all edges in Edge table by their labels and creates one table

for each distinct label.

➢ Each label has the following schema:

Label(Source, Target, Flag, Value)

➢ Example:

Table 1: Book (1 , 2 , Ref , -)
Table 2: Title (2 , 3 , Val , Databases) ...

SQL Query using Binary ApproachSQL Query using Binary Approach
→ SQL Query for “/Book[title = “Databases”]/year”

Select year, Value

From Book , title , year

Where book.Source = 1 and
 book.Target = title.source and
 book.Target = year.source and
 title.Value = 'Databases'

Avoiding the edge selection part speeds up processing!

Trade-off: Creating multiple tables for each label in large XML documents can be
chaotic!

2. XML Query Processing – Native Approach2. XML Query Processing – Native Approach
Why Native approach?

Relational approach does not exhibit optimal query processing
performance.
Storage and query processing tailored for XML data only.

How is data stored?

Inverted Lists!
Create an inverted list for each distinct tag in the XML document.

How is the location of an element defined?

Represented as (Start, End, Level) numbers.

Inverted ListInverted List
XML Document
<Presenters>

<Presenter>

<name> Swetha </name>
<topic> XML Data Management </topic>

</Presenter>

<Presenter>

<paper>
<topic> Map Reduce </topic>
<name> XYZ </name>

</paper>
</Presenter>

</Presenters>

Inverted List

Each distinct tag is stored in an
inverted list.

Syntax:
(Start , End , Level) numbers.

<Presenter> (2,11,1) , (12,22,1)

<name> (3,5,2) , (18,20,3)

1

2
3 4 5
6 87 9 10

11

12

13
14 1514 16 17
18 19 20

21
22

23

 The Multi-Predicate MerGe JoiN (MPMGJN) ApproachThe Multi-Predicate MerGe JoiN (MPMGJN) Approach
➢ Useful for querying “A//B” or “A/B”

Procedure:
Initialize 2 cursors to point to 2 inverted lists.

➢ Consider <Presenter> list as ListA(start , end)

 <name> list as ListB(start , end)
➢ Positions within the lists are compared at each iteration

➢ Presenter (2 , 11) ; Name (3, 5)

➢ a.start = 2 , a.end = 11 ; b.start = 3 , b.end = 5

Algorithm...Algorithm...

Native Approach - EfficiencyNative Approach - Efficiency
● Experimental results showed that MPMGJN approach is faster

than current RDBMS join implementations.

● Each element in list B is iterated to find which B's are children
of A for executing query A/B. This leads to more processing
time.

● Processing time can be reduced by adopting other native
methods such as Stack based approach.

Open IssuesOpen Issues

➢ Can RDBMS be efficiently leveraged to query XML data ?

➢ Would a combined approach of relational databases and native
methods be better?

➢ How to process queries for large XML data?

Conclusion...Conclusion...
What did we see?

➢ Need for XML
➢ How to map XML to Relational Tables.
➢ Opt for IR-Style queries in case of large texts.
➢ Efficiently processing XML queries.
➢ Relational approach – transform XML to SQL queries.
➢ Native approach – query the data stored in special data structures like inverted lists.
➢ Open Issues.

XML is not a replacement for HTML but an extension to it!!!

Reads that might interest you...Reads that might interest you...

[1] http://vgc.poly.edu/~juliana/pub/xml-data-management-slides.pdf

[2] http://plato.asu.edu/slides/yi.pdf

[3] How to Store and Query XML Data, Silvia Stefanova

[4] Efficiently Querying Large XML Data Repositories: A Survey,
 Gang Gou and Rada Chirkova

http://vgc.poly.edu/~juliana/pub/xml-data-management-slides.pdf
http://plato.asu.edu/slides/yi.pdf

Thank You...Thank You...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

