Classifying Large Data Sets Using SVMs with Hierarchical Clusters

Presented by :Limou Wang

Overview

- SVM Overview
- Motivation
- Hierarchical micro-clustering algorithm
- Clustering-Based SVM (CB-SVM)
- Experimental Evaluation
- Conclusion & Future work

SVM Overview

- What is Support Vector Machine ? analyze data & recognize patterns
- How does SVM work ?

Training phase : Given a sequence of training examples, find a hyperplane that separate these data points.

Predicting phase : When a new data points arrive, correctly classifies it.

SVM Overview

X₂

Example :

- H1(blue) &
 H2(red) separate
 the data points ^(C)
- H3(green) does not ⊗

SVM Overview

Maximum Margin Principle

Samples on the margin are called support vectors

Motivation

- SVM has been promising methods
- However, training time of the standard SVM is O(N³)
- Therefore, not scalable for very large data sets

Goals

- Minimize running time and data scans, thus formulating the problem for large data sets
- Clustering decisions made without scanning the whole data
- Exploit the non uniformity of data treat dense areas as one, and remove outliers (noise)

Clustering Feature (CF)

- CF is a compact storage for data on points in a cluster
- Has enough information to calculate the intracluster distances

$$C = \frac{\sum_{i=1}^{N} x_i}{N} \qquad \qquad R = \left(\frac{\sum_{i=1}^{N} ||x_i - C||^2}{N}\right)^{\frac{1}{2}}$$

 Additivity theorem allows us to merge subclusters

CF (contd.)

- Given N d-dimensional data points in a cluster: {Xi} where i = 1, 2, ..., N,
- CF = (N, LS, SS)
- N is the number of data points in the
- cluster,
- LS is the linear sum of the N data points,
- SS is the square sum of the N data points.

CF Tree

- Comprising of a root node, non-leaf nodes and leaf nodes
- Two parameters : branching factor b & threshold t
- Non-leaf node at most b entries
- Radius of an leaf node entry must less than t

CF Tree (contd.)

Example

CF Tree

B = Max. no. of CF in a non-leaf node

L = Max. no. of CF in a leaf node

Thus, CF Tree is a compact representation of a large data set

- CF Tree (contd.)
- Algorithm :
- Identifying the appropriate leaf Root -> closet centroid
- Modifying the leaf
 Absorb, add an entry or split
- 3. Modifying the path to the leaf Recursively back to the root

CF Tree (contd.)

Outlier handling : After building the CF tree, remove the entries that contains far fewer data points than the average

Running time : If we only consider the dependence of the size of the data set, the computation complexity of the algorithm is O(N)

Train data using the hierarchical micro-cluster

- 1. Construct two CF trees
- 2. Train an SVM boundary function from the centroids of the root entries
- 3. Decluster the entries near the boundary into the next level
- 4. Update the SVM boundary function from the centroids of the entries in the training set, repeat 3 until nothing is accumulated

Decluster the low-margin cluster :

Let D_s be the distance from the boundary to the centroid of a support cluster

D_i be the distance from the boundary to the centroid of a cluster E_i

Then

$$f \quad D_i - R_i < D_s$$

E_i is considered to be a low margin cluster

Next, we look at how CB-SVM works

Running time :

Let r = s / b

s : average number of support entries

0 < r << 1

Therefore, CB-SVM trains from leaf entries is $O(b^{2h})$ If the # of leaf entries = number of data points, It trains $1/r^{2h-2}$ faster than the standard SVM which is a huge improvement in performance compared with the standard SVM as the data set becomes larger

Environment :

All experiments are done in a Pentium III 800Mhz machine with 906MB memory

Premise :

Perform binary classification on 2 dimensional data sets

Note : training and testing data are drawn from the same distribution

(a) original data set (N = 113601)

	Original	CB-SVM	0.5% samples
Number of data points	113601	597	603
SVM Training time (sec.)	160.792	0.003	0.003
Sampling time (sec.)	0.0	10.586	4.111
# of false predictions	69	86	243
(# of FP, # of FN)	(49, 20)	(73, 13)	(220, 23)

Table 2: Performance results on synthetic data set (# of training data = 113601, # of testing data = 107072). FP:false positive; FN:false negative; Sampling time for CB-SVM: time for contructing the CF tree

S-Rate	# of data	# of errors	T-Time	S-Time
0.0001%	23	6425	0.000114	822.97
0.001%	226	2413	0.000972	825.40
0.01%	2333	1132	0.03	828.61
0.1%	23273	1012	6.287	835.87
1%	230380	1015	1192.793	838.92
5%	1151714	1020	20705.4	84 2. 9 2
CB-SVM	2893	876	1.639	2528.213

Table 4: Performance results on the very large data set (# of training data = 23066169, # of testing data = 233890). S-Rate: sampling rate; T-Time: training time; S-Time: sampling time;

Conclusion & Future work

- CB-SVM very scalable for large data sets
- Generating high classification accuracy However,
- Limited to the usage of linear kernels
- Radius and distances will not be preserved in a high-dimensional feature space

Future work

Constructing an efficient indexing structure for nonlinear kernels

Questions ?

Thank you !