Schema Refinement and Normalization
Functional Dependencies (Review)

• A functional dependency $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R:

$$t1 \in r, \ t2 \in r, \ \pi_X(t1) = \pi_X(t2)$$

implies

$$\pi_Y(t1) = \pi_Y(t2)$$

(where $t1$ and $t2$ are tuples; X and Y are sets of attributes)

• In other words: $X \rightarrow Y$ means

Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)

• Can read “\rightarrow” as “determines”
Normal Forms

• Back to schema refinement...
• Q1: is any refinement needed??!
• If a relation is in a normal form (BCNF, 3NF etc.):
 – we know that certain problems are avoided/minimized.
 – helps decide whether decomposing a relation is useful.
• Role of FDs in detecting redundancy:
 – Consider a relation R with 3 attributes, ABC.
 • No (non-trivial) FDs hold: There is no redundancy here.
 • Given A → B: If A is not a key, then several tuples could have the same A value, and if so, they’ll all have the same B value!
• 1st Normal Form – all attributes are atomic
• 1st ⊃ 2nd (of historical interest) ⊃ 3rd ⊃ Boyce-Codd ⊃ ...
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in **BCNF** if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial* FD), or
 - X is a superkey for R.
- **In other words:** "R is in BCNF if the only non-trivial FDs over R are *key constraints.*"
- **If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.**
 - Say we know FD $X \rightarrow A$ holds this example relation:

X	Y	A
x	y1	a
x	y2	?

 - Can you guess the value of the missing attribute?
 - Yes, so relation is not in BCNF
Decomposition of a Relation Schema

• If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.

• Suppose that relation R contains attributes \(A_1 \ldots A_n \). A decomposition of R consists of replacing R by two or more relations such that:
 – Each new relation scheme contains a subset of the attributes of R, and
 – Every attribute of R appears as an attribute of at least one of the new relations.
Example (same as before)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps

- SNLRWH has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
- Q: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.
Decomposing a Relation

- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Wages

Hourly_Emps2

- Q: Are both of these relations are now in BCNF?

- Decompositions should be used only when needed.
 - Q: potential problems of decomposition?
Problems with Decompositions

There are three potential problems to consider:

1) May be **impossible** to reconstruct the original relation! (Lossiness)
 • Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.
 • Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.
 • e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.
Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
Lossy Decomposition (example)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

A → \(B; \) C → \(B \)

\[
\begin{array}{ccc}
\hline
A & B & C \\
\hline
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
\hline
A & B \\
\hline
1 & 2 \\
4 & 5 \\
7 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
\hline
B & C \\
\hline
2 & 3 \\
5 & 6 \\
7 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
\hline
B & C \\
\hline
2 & 3 \\
5 & 6 \\
7 & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
\hline
A & B & C \\
\hline
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
\hline
A & B & C \\
\hline
1 & 2 & 8 \\
7 & 2 & 3 \\
\hline
\end{array}
\]
Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** w.r.t. a set of FDs F if, for every instance \(r \) that satisfies F:
 \[
 \pi_X(r) \bowtie \pi_Y(r) = r
 \]
- **It is always true that** \(r \subseteq \pi_X(r) \bowtie \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- **Definition extended to decomposition into 3 or more relations in a straightforward way.**
- **It is essential that all decompositions used to deal with redundancy be lossless!** *(Avoids Problem #1)*
More on Lossless Decomposition

• The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:

 \[X \cap Y \rightarrow X, \quad \text{or} \quad X \cap Y \rightarrow Y \]

 in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., “B”) is not a key of either resulting relation.

• **Useful result:** If \(W \rightarrow Z \) holds over R and \(W \cap Z \) is empty, then decomposition of R into R-Z and WZ is loss-less.
Lossless Decomposition (example)

\[
\begin{array}{ccc}
A & B & C \\
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 2 & 8 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cc}
A & C \\
1 & 3 \\
4 & 6 \\
7 & 8 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cc}
B & C \\
2 & 3 \\
5 & 6 \\
2 & 8 \\
\end{array}
\]

A → B; C → B

But, now we can’t check A → B without doing a join!
Dependency Preserving Decomposition

• Dependency preserving decomposition (Intuitive):
 – If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R must also hold. *(Avoids Problem #2 on our list.)*

• **Projection of set of FDs F**: If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ *(closure of F, not just F)* such that all of the attributes U, V are in X. *(same holds for Y of course)*
Dependency Preserving Decompositions (Contd.)

- **Decomposition of R into X and Y is dependency preserving if** \((F_X \cup F_Y)^+ = F^+\)
 - i.e., if we consider only dependencies in the closure \(F^+\) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+\).

- **Important to consider \(F^+\) in this definition:**
 - ABC, \(A \rightarrow B, B \rightarrow C, C \rightarrow A\), decomposed into AB and BC.
 - Is this dependency preserving? Is \(C \rightarrow A\) preserved??????
 - note: \(F^+\) contains \(F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}\), so...

- \(FAB\) contains \(A \rightarrow B\) and \(B \rightarrow A\); \(FBC\) contains \(B \rightarrow C\) and \(C \rightarrow B\)
 - So, \((FAB \cup FBC)^+\) contains \(C \rightarrow A\)
Decomposition into BCNF

• Consider relation R with FDs F. First, make sure all FDs in F contain only single attribute on RHS (this is always doable, for example, if you have AB \rightarrow CD, spit it into AB \rightarrow C and AB \rightarrow D);

• Next, If X \rightarrow Y (in F) violates BCNF, decompose R into R - Y and XY (guaranteed to be loss-less).

• Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

• Why?
Decomposition into BCNF

Decomposition Algorithm

Algorithm BCNF(R: relation, F: FD set)

Begin
1. Update F s.t. all FDs in F has single attribute on RHS
2. Result \rightarrow \{R\}
3. While some \(R_i \) in Result not in BCNF Do
 a. Chose \((X \rightarrow Y)\) in F s.t.
 \((X \rightarrow Y)\) covered by \(R_i \)
 \(X \not\rightarrow\rightarrow R_i\) (\(X\) not a superkey for \(R_i \))
 b. Decompose \(R_i \) on \((X \rightarrow Y)\)
 \(R_{i1} \leftarrow X \cup Y\)
 \(R_{i2} \leftarrow R_i - Y\)
 c. Result \leftarrow Result - \{R_i\} U \{R_{i1}, R_{i2}\}

4. return Result
End
Decomposition into BCNF

- e.g., CSJDPQV, key C, JP → C, SD → P, J → S
 - \{contractid, supplierid, projectid, deptid, partid, qty, value\}
- To deal with SD → P, decompose into SDP, CSJDQV.
- To deal with J → S, decompose CSJDQV into JS and CJDQV
- So we end up with: SDP, JS, and CJDQV

- **Note:** several dependencies may cause violation of BCNF. The order in which we `deal with` them could lead to very different sets of relations!
BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS → Z, Z → C
 - Can’t decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
- \{contractid, supplierid, projectid, deptid, partid, qty, value\}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)
Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial* FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R. (sometimes stated as “A is prime”)

- *Minimality* of a key is crucial in third condition above!

- If R is in BCNF, obviously in 3NF.

- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good'' decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
What Does 3NF Achieve?

- **If 3NF violated by** $X \rightarrow A$, **one of the following holds:**
 - X is a subset of some key K (**"partial dependency"**)
 - We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBD and $S \rightarrow C$
 - X is not a proper subset of any key. (**"transitive dep."**)
 - There is a chain of FDs $K \rightarrow X \rightarrow A$
 - So we can’t associate an X value with a K value unless we also associate an A value with an X value (different K’s, same X implies same A!) – problem with initial SNLRWH example.

- **But: even if** R **is in 3NF, these problems could arise.**
 - e.g., Reserves SBDC (note: “C” is for credit card here), $S \rightarrow C$, $C \rightarrow S$ is in 3NF (why?), but for each reservation of sailor S, same (S, C) pair is stored.

- **Thus, 3NF is indeed a compromise relative to BCNF.**
 - You have to deal with the partial and transitive dependency issues in your application code!
Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.

- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve’ $JP \rightarrow C$. What if we also have $J \rightarrow C$?

- Refinement: Instead of the given set of FDs F, use a minimal cover for F.
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.

- e.g., $A \to B$, $ABCD \to E$, $EF \to GH$, $ACDF \to EG$ has the following minimal cover:
 - $A \to B$, $ACD \to E$, $EF \to G$ and $EF \to H$

- **M.C. implies Lossless-Join, Dep. Pres. Decomp!!!**
 - Start with M.C. of F, do the decomposition from last slide
3NF Decomposition Algorithm: Another Approach

Algorithm 3NF (R: relation, F: FD set)
1. Compute Fc = M.C. of F
2. i ← 0
3. For each X → Y in Fc do
 if no Rj (1 <= j <= i) contains X,Y
 i ← i+1
 Ri ← X U Y
4. If no Rj (1 <= j <= i) contains a candidate key for R
 i ← i+1
 Ri ← any candidate key for R
5. return (R1, R2, ..., Ri)
3NF Decomposition Example

Example:

\[R = (\text{bname, cname, banker, office}) \]
\[F_c = \{ \text{banker }\rightarrow\text{ bname office,} \]
\[\quad \text{cname bname }\rightarrow\text{ banker} \} \]

Q1: candidate keys of R: cname bname or cname banker

Is R in 3NF?

Q2: If not, decompose R into 3NF.

Ans: R is not in 3NF: banker \(\rightarrow\) bname office
\{bname, office\} not a subset of a c. key

3NF: \[R_1 = (\text{banker, bname, office}) \]
\[R_2 = (\text{cname, bname, banker}) \]
\[R_3 = ? \text{ Empty (done)} \]
Summary of Schema Refinement

- **BCNF**: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- **Not in BCNF? Try decomposing into BCNF relations.**
 - Must consider whether all FDs are preserved!
- **Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.**
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.
- **Note**: even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)