ER to Relational Mapping

Chapter 3. 5
Logical DB Design: ER to Relational

- Entity sets to tables.

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
</tr>
</tbody>
</table>
Relationship Sets to Tables

- In translating a many-to-many relationship set to a relation, attributes of the relation must include:
 - Keys for each participating entity set (as foreign keys).
 - This set of attributes forms a superkey for the relation.
 - All descriptive attributes.

```sql
CREATE TABLE Works_In(
    ssn CHAR(1),
    did INTEGER,
    since DATE,
    PRIMARY KEY (ssn, did),
    FOREIGN KEY (ssn)
        REFERENCES Employees,
    FOREIGN KEY (did)
        REFERENCES Departments
)
```

<table>
<thead>
<tr>
<th>ssn</th>
<th>did</th>
<th>since</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>51</td>
<td>1/1/91</td>
</tr>
<tr>
<td>123-22-3666</td>
<td>56</td>
<td>3/3/93</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>51</td>
<td>2/2/92</td>
</tr>
</tbody>
</table>
Review: Key Constraints

- Each dept has **at most one** manager, according to the **key constraint** on Manages.

Translation to relational model?

1-to-1 1-to Many Many-to-1 Many-to-Many
Translating ER Diagrams with Key Constraints

- Map relationship set to a table:
 - Note that did is the key now!
 - Separate tables for Employees and Departments.

- Since each department has a unique manager, we could instead combine Manages and Departments.

```sql
CREATE TABLE Manages(
    ssn CHAR(11),
    did INTEGER,
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees,
    FOREIGN KEY (did) REFERENCES Departments)
```

```sql
CREATE TABLE Dept_Mgr(
    did INTEGER,
    dname CHAR(20),
    budget REAL,
    ssn CHAR(11),
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees)
```
Review: Participation Constraints

• **Does every department have a manager?**
 – If so, this is a *participation constraint*: the participation of Departments in Manages is said to be *total* (vs. *partial*).

• Every *did* value in Departments table must appear in a row of the Manages table (with a non-null *ssn* value!)
Participation Constraints in SQL

- We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints).

```sql
CREATE TABLE Dept_Mgr(
    did INTEGER,
    dname CHAR(20),
    budget REAL,
    ssn CHAR(11) NOT NULL,
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees,
    ON DELETE NO ACTION)
```
Review: Weak Entities

• A weak entity can be identified uniquely only by considering the primary key of another (owner) entity.
 – Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities).
 – Weak entity set must have total participation in this identifying relationship set.
Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
 - When the owner entity is deleted, all owned weak entities must also be deleted.

```
CREATE TABLE Dep_Policy (  
    pname CHAR(20),
    age INTEGER,
    cost REAL,
    ssn CHAR(11) NOT NULL,
    PRIMARY KEY (pname, ssn),
    FOREIGN KEY (ssn) REFERENCES Employees,
    ON DELETE CASCADE)
```
Review: ISA Hierarchies

- As in C++, or other PLs, attributes are inherited.
- If we declare A ISA B, every A entity is also considered to be a B entity.

- **Overlap constraints**: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? *(Allowed/disallowed)*

- **Covering constraints**: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? *(Yes/no)*
Translating ISA Hierarchies to Relations

• General approach:
 – 3 relations: Employees, Hourly_Emps and Contract_Emps.
 • Hourly_Emps: Every employee is recorded in Employees. For hourly emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked, ssn); must delete Hourly_Emps tuple if referenced Employees tuple is deleted).
 • Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes.
 • Alternative: Just Hourly_Emps and Contract_Emps.
 – Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.
 – Each employee must be in one of these two subclasses.
E/R to Relations

E/R diagram

Relational schema, e.g.
account=(bname, acct_no, bal)

E = (a₁, ..., aₙ)

R₁ = (a₁, b₁, c₁, ..., cₖ)
More on relationships

• What about:

![Diagram]

• Could have:

\[R_1 = (a_1, b_1, c_1, \ldots, c_k) \]

• put \(b_1 \) as the key for \(R_1 \), it is also the key for

\[E_2 = (b_1, \ldots, b_n) \]

• Usual strategy:
 – ignore \(R_1 \)
 – Add \(a_1, c_1, \ldots, c_k \) to \(E_2 \) instead, i.e.
 – \(E_2 = (b_1, \ldots, b_n, a_1, c_1, \ldots, c_k) \)
More

\[E_1 = \langle a_1, \ldots, a_n \rangle \quad E_2 = \langle b_1, \ldots, b_m \rangle \]
\[R_1 = \langle a_1, b_1, c_1, \ldots, c_k \rangle \]

Treat as n:1 or 1:m
Foreign key also needs to be marked as a candidate key!
E/R to Relational

- **Weak entity sets**

\[
E_1 = (a_1, \ldots, a_n) \\
E_2 = (a_1 b_1, \ldots, b_m)
\]
E/R to Relational

Method 1:

\[E = (a_1, \ldots, a_n) \]
\[S1 = (a_1, b_1, \ldots, b_m) \]
\[S2 = (a_1, c_1, \ldots, c_k) \]

Method 2:

\[S1 = (a_1, \ldots, a_n, b_1, \ldots, b_m) \]
\[S2 = (a_1, \ldots, a_n, c_1, \ldots, c_k) \]

Q: When is method 2 not possible?
Tenary relationship set:

- What about tenary:
 - $E_1(a_1, \ldots, a_n)$ $E_2(b_1, \ldots, b_m)$ $E_3(d_1, \ldots, d_l)$
 - $R_1(a_1, b_1, d_1, c_1, \ldots, c_k)$

- Strategy:
 - $E_1(a_1, \ldots, a_n)$ $E_2(b_1, \ldots, b_m)$ $E_3(d_1, \ldots, d_l)$
E/R to Relational

- Aggregation

E1, R1, E2, E3 as before

R2 = (c₁, a₁, b₁, d₁, ..., d_j)
ER Model Summary

- Usually easier to understand than Relational
- Expresses relationships clearly
- Rules to convert ER-diagrams to Relational Schema
- Some systems use ER-model for schema design
- Some people use ER-model as step before creating relational tables