Database Systems

Functional Dependencies

Feifei Li

University of Utah
Review: Database Design

- **Requirements Analysis**
 - user needs; what must database do?

- **Conceptual Design**
 - high level descr (often done w/ER model)

- **Logical Design**
 - translate ER into DBMS data model

- **Schema Refinement**
 - consistency, normalization

- **Physical Design** - indexes, disk layout

- **Security Design** - who accesses what
The Evils of Redundancy

- **Redundancy** is at the root of several problems associated with relational schemas:
 - *redundant storage, insert/delete/update anomalies*
- Integrity constraints, in particular **functional dependencies**, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: **decomposition**
 - replacing ABCD with, say, AB and BCD, or ACD and ABD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?
Functional Dependencies (FDs)

- A functional dependency $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R:
 \[
 t_1 \in r, \ t_2 \in r, \ \pi_X(t_1) = \pi_X(t_2) \implies \pi_Y(t_1) = \pi_Y(t_2)
 \]
 (where t_1 and t_2 are tuples; X and Y are sets of attributes)

- In other words: $X \rightarrow Y$ means
 Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)

- Can read “\rightarrow” as “determines”
FD’s Continued

- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance $r1$ of R, we can check if $r1$ violates some FD f, but we cannot determine if f holds over R.

- Question: How related to keys?
- if “$K \rightarrow$ all attributes of R” then K is a superkey for R
 (does not require K to be minimal.)
- FDs are a generalization of keys.
FDs are extremely useful: some simple examples

- Given Enroll(sid, cid, score, semester, year)
 - All students enrolled in the same course (including the same course over different semesters and years) should be assigned a distinct score
 \[(cid, score) \rightarrow sid\]
 - Each student should be allowed to take only one course
 \[sid \rightarrow cid\]
 - A course must be always offered in the same semester
 \[cid \rightarrow semester\]
 - A student must be given different scores from different courses he/she takes.
 \[(sid, score) \rightarrow cid\]
Consider relation obtained from Hourly_Emps:

Hourly_Emps \((ssn, name, lot, rating, wage_per_hr, hrs_per_wk)\)

We sometimes denote a relation schema by listing the attributes: e.g., \(SNLRWH\)

This is really the set of attributes \(\{S,N,L,R,W,H\}\).

Sometimes, we refer to the set of all attributes of a relation by using the relation name. e.g., “Hourly_Emps” for SNLRWH

What are some FDs on Hourly_Emps?

ssn is the key: \(S \rightarrow SNLRWH\)

rating determines wage_per_hr: \(R \rightarrow W\)

lot determines lot: \(L \rightarrow L\) (“trivial” dependency)
Problems Due to $R \rightarrow W$

- **Update anomaly**: Can we modify W in only the 1st tuple of SNLRWH?
- **Insertion anomaly**: What if we want to insert an employee and don’t know the hourly wage for his or her rating? (or we get it wrong?)
- **Deletion anomaly**: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps
Detecting Redundancy

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Q: Why was R → W problematic, but S → W not?
Decomposing a Relation

- Redundancy can be removed by “chopping” the relation into pieces.
- FD’s are used to drive this process.

$R \rightarrow W$ is causing the problems, so decompose $SNLRWH$ into what relations?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

$\begin{bmatrix}
R & W \\
8 & 10 \\
5 & 7
\end{bmatrix}$

Wages

Hourly_Emps2
Refining an ER Diagram

- 1st diagram becomes:

 Workers(S,N,L,D,Si)
 Departments(D,M,B)

 - Lots associated with workers.

- Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L \)

- Redundancy; fixed by:

 Workers2(S,N,D,Si) Dept_Lots(D,L)
 Departments(D,M,B)

- Can fine-tune this:

 Workers2(S,N,D,Si)
 Departments(D,M,B,L)

Before:

![Before Diagram](image)

After:

![After Diagram](image)
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:

 \[\text{title} \rightarrow \text{studio, star} \] implies \[\text{title} \rightarrow \text{studio} \] and \[\text{title} \rightarrow \text{star} \]

 \[\text{title} \rightarrow \text{studio} \] and \[\text{title} \rightarrow \text{star} \] implies \[\text{title} \rightarrow \text{studio, star} \]

 \[\text{title} \rightarrow \text{studio, studio} \rightarrow \text{star} \] implies \[\text{title} \rightarrow \text{star} \]

- But, \[\text{title, star} \rightarrow \text{studio} \] does NOT necessarily imply that \[\text{title} \rightarrow \text{studio} \] or that \[\text{star} \rightarrow \text{studio} \]

- An FD \(f \) is **implied by** a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.

- \(F^+ = \text{closure of } F \) is the set of all FDs that are implied by \(F \). (includes “trivial dependencies”)

Rules of Inference

- **Armstrong’s Axioms** (X, Y, Z are sets of attributes):
 - *Reflexivity*: If X ⊇ Y, then X → Y
 - *Augmentation*: If X → Y, then XZ → YZ for any Z
 - *Transitivity*: If X → Y and Y → Z, then X → Z

- These are *sound* and *complete* inference rules for FDs!
 - i.e., using AA you can compute all the FDs in F+ and only these FDs.

- Some additional rules (that follow from AA):
 - *Union*: If X → Y and X → Z, then X → YZ
 - *Decomposition*: If X → YZ, then X → Y and X → Z
Sample Proof: prove by definition

- Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z

- **Proof:**
 Given $X \rightarrow Y$ on a schema R, for any valid instance r conforming to R, and any two records t_1 and t_2 from r, by definition, we know that $\pi_X(t_1) = \pi_X(t_2)$ implies $\pi_Y(t_1) = \pi_Y(t_2)$: Fact 1.

 Note that we also trivially have $\pi_Z(t_1) = \pi_Z(t_2)$ for any such two records t_1 and t_2 and any Z: Fact 2.

 Hence, by Facts 1 and 2, if we know $\pi_{XZ}(t_1) = \pi_{XZ}(t_2)$, we must have $\pi_{YZ}(t_1) = \pi_{YZ}(t_2)$

 This by definition, implies $XZ \rightarrow YZ$ for any Z.
Sample Proof: prove by rules

• **Union:** If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

 Proof: By $X \rightarrow Y$ and augmentation rule, we have $XX \rightarrow XY$. Similarly, by $X \rightarrow Z$ and augmentation rule again, we have $XY \rightarrow YZ$

 Now by transitivity, we have $XX \rightarrow YZ$, which implies $X \rightarrow YZ$.

• **Decomposition:** If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

 Proof: By reflexivity, $YZ \rightarrow Y$ and $YZ \rightarrow Z$. Then, by transitivity and given $X \rightarrow YZ$, we have both $X \rightarrow Y$ and $X \rightarrow Z$.

Example

Contracts\((cid, sid, jid, did, pid, qty, value) \), and:
- C is the key: \(C \rightarrow CSJDPQV \)
- Proj purchases each part using single contract: \(JP \rightarrow C \)
- Dept purchases at most 1 part from a supplier: \(SD \rightarrow P \)

Problem: Prove that SDJ is a key for Contracts

\[JP \rightarrow C, \quad C \rightarrow CSJDPQV \quad \text{imply} \quad JP \rightarrow CSJDPQV \]
(by transitivity) (shows that JP is a key)

\[SD \rightarrow P \quad \text{implies} \quad SDJ \rightarrow JP \quad \text{(by augmentation)} \]

\[SDJ \rightarrow JP, \quad JP \rightarrow CSJDPQV \quad \text{imply} \quad SDJ \rightarrow CSJDPQV \]
(by transitivity) thus SDJ is a key.

Q: can you now infer that \(SD \rightarrow CSDPQV \) (i.e., drop J on both sides)?

No! FD inference is not like arithmetic multiplication.
Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)

- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute \textit{attribute closure} of X (denoted X^+) wrt F. $X^+ = \text{Set of all attributes } A \text{ such that } X \rightarrow A \text{ is in } F^+$
 - $X^+ := X$
 - Repeat until no change: if there is an fd $U \rightarrow V$ in F such that U is in X^+, then add V to X^+
 - Check if Y is in X^+
 - Approach can also be used to find the keys of a relation.
 - If all attributes of R are in the closure of X then X is a superkey for R.
 - Q: How to check if X is a “candidate key”?
Attribute Closure (example)

- \(R = \{A, B, C, D, E\} \)
- \(F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \} \)
- Is \(B \rightarrow E \) in \(F^+ \)?
 - \(B^+ = B \)
 - \(B^+ = BCD \)
 - \(B^+ = BCDA \)
 - \(B^+ = BCDAE \) ... Yes! and \(B \) is a key for \(R \) too!
- Is \(D \) a key for \(R \)?
 - \(D^+ = D \)
 - \(D^+ = DE \)
 - \(D^+ = DEC \) ... Nope!
- Is \(AD \) a key for \(R \)?
 - \(AD^+ = AD \)
 - \(AD^+ = ABD \) and \(B \) is a key, so Yes!
- Is \(AD \) a \textit{candidate} key for \(R \)?
 - \(A^+ = A \), \(D^+ = DEC \)
 - ... \(A,D \) not keys, so Yes!
- Is \(ADE \) a \textit{candidate} key for \(R \)?
 - ... No! \(AD \) is a key, so \(ADE \) is a superkey, but not a candidate key
Schema Refinement and Normalization
Functional Dependencies (Review)

- A functional dependency $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R:

 $t_1 \in r$, $t_2 \in r$, $\pi_X(t_1) = \pi_X(t_2)$

 implies $\pi_Y(t_1) = \pi_Y(t_2)$

 (where t_1 and t_2 are tuples; X and Y are sets of attributes)

- In other words: $X \rightarrow Y$ means

 Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)

- Can read “\rightarrow” as “determines”
Normal Forms

- Back to schema refinement...
- Q1: is any refinement needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A \(\rightarrow\) B: If A is not a key, then several tuples could have the same A value, and if so, they’ll all have the same B value!
- 1\(^{st}\) Normal Form – all attributes are atomic
- 1\(^{st}\) \(\supset\) 2\(^{nd}\) (of historical interest) \(\supset\) 3\(^{rd}\) \(\supset\) Boyce-Codd \(\supset\) ...
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in **BCNF** if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial* FD), or
 - X is a superkey for R.

- In other words: “R is in BCNF if the only non-trivial FDs over R are *key constraints*.”

- If R in BCNF, then every field of every tuple records information that **cannot be inferred** using FDs alone.
 - Say we know FD $X \rightarrow A$ holds this example relation:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y1</td>
<td>a</td>
</tr>
<tr>
<td>x</td>
<td>y2</td>
<td>?</td>
</tr>
</tbody>
</table>

- **Can you guess the value of the missing attribute?**

- **Yes, so relation is not in BCNF**
Decomposition of a Relation Schema

- If a relation is not in a desired normal form, it can be *decomposed* into multiple relations that each are in that normal form.

- Suppose that relation R contains attributes A1 \ldots An. A *decomposition* of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a *subset* of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one of the new relations.
Example (same as before)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps

- SNLRWH has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
- Q: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.
Decomposing a Relation

- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

S N L R H

8 10 5 7

Wages

Hourly_Emps2

- Q: Are both of these relations are now in BCNF?
- Decompositions should be used only when needed.
 - Q: potential problems of decomposition?
Problems with Decompositions

- There are three potential problems to consider:
 1) May be **impossible** to reconstruct the original relation! (lossiness)
 - Fortunately, not in the SNLRWH example.
 2) Dependency checking may require joins.
 - Fortunately, not in the SNLRWH example.
 3) Some queries become more expensive.
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.
Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

Diagram

```
R  W
8  10
5  7
```

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
Lossy Decomposition (example)

A → B; C → B
Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** w.r.t. a set of FDs F if, for every instance \(r \) that satisfies F:
 \[
 \pi_X(r) \bowtie \pi_Y(r) = r
 \]
- It is always true that \(r \subseteq \pi_X(r) \bowtie \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- **It is essential that all decompositions used to deal with redundancy be lossless!** *(Avoids Problem #1)*
The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:

\[X \cap Y \rightarrow X, \quad \text{or} \quad X \cap Y \rightarrow Y \]

in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., “B”) is not a key of either resulting relation.

Useful result: If \(W \rightarrow Z \) holds over R and \(W \cap Z \) is empty, then decomposition of R into R-Z and WZ is loss-less.
Lossless Decomposition (example)

A → B; C → B

But, now we can’t check A → B without doing a join!
Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R must also hold. *(Avoids Problem #2 on our list.)*

- **Projection of set of FDs F:** If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ (closure of F, not just F) such that all of the attributes U, V are in X. *(same holds for Y of course)*
Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is \textit{dependency preserving} if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.

- Important to consider F^+ in this definition:
 - ABC, A \rightarrow B, B \rightarrow C, C \rightarrow A, decomposed into AB and BC.
 - Is this dependency preserving? Is C \rightarrow A preserved????
 - note: F^+ contains $F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...

- FAB contains A \rightarrow B and B \rightarrow A; FBC contains B \rightarrow C and C \rightarrow B
- So, $(FAB \cup FBC)^+$ contains C \rightarrow A
Decomposition into BCNF

- Consider relation R with FDs F. First, make sure all FDs in F contain only single attribute on RHS (this is always doable, for example, if you have $AB \rightarrow CD$, split it into $AB \rightarrow C$ and $AB \rightarrow D$);

- Next, if $X \rightarrow Y$ (in F) violates BCNF, decompose R into $R - Y$ and XY (guaranteed to be loss-less).

- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
Decomposition into BCNF

- e.g., CSJDPQV, key C, JP → C, SD → P, J → S
- \{contractid, supplierid, projectid, deptid, partid, qty, value\}
- To deal with SD → P, decompose into SDP, CSJDQV.
- To deal with J → S, decompose CSJDQV into JS and CJDQV
- So we end up with: SDP, JS, and CJDQV

- Note: several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!
In general, there may not be a dependency preserving decomposition into BCNF.

- e.g., CSZ, CS → Z, Z → C
- Can’t decompose while preserving 1st FD; not in BCNF.

Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).

{contractid, supplierid, projectid, deptid, partid, qty, value}
- However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the FD (Redundancy!)
Third Normal Form (3NF)

- Reln \(R \) with FDs \(F \) is in 3NF if, for all \(X \rightarrow A \) in \(F^+ \)
 - \(A \in X \) (called a trivial FD), or
 - \(X \) is a superkey of \(R \), or
 - \(A \) is part of some candidate key (not superkey!) for \(R \). (sometimes stated as “A is prime”)

- Minimality of a key is crucial in third condition above!

- If \(R \) is in BCNF, obviously in 3NF.

- If \(R \) is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good’’ decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of \(R \) into a collection of 3NF relations always possible.
What Does 3NF Achieve?

- If 3NF violated by \(X \rightarrow A \), one of the following holds:
 - \(X \) is a subset of some key \(K \) (“partial dependency”)
 - We store \((X, A)\) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBD and \(S \rightarrow C \)
 - \(X \) is not a proper subset of any key. (“transitive dep.”)
 - There is a chain of FDs \(K \rightarrow X \rightarrow A \)
 - So we can’t associate an \(X \) value with a \(K \) value unless we also associate an \(A \) value with an \(X \) value (different \(K \)’s, same \(X \) implies same \(A \)!)

- But: even if \(R \) is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: “C” is for credit card here), \(S \rightarrow C, C \rightarrow S \) is in 3NF (why?), but for each reservation of sailor \(S \), same \((S, C)\) pair is stored.

- Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues in your application code!
Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.

- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve’ $JP \rightarrow C$.
 What if we also have $J \rightarrow C$?

- Refinement: Instead of the given set of FDs F, use a *minimal cover for F*.
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = $ closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.

- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$

- M.C. implies Lossless-Join, Dependency Preserving Decomposition!!!
 - Start with M.C. of F, do the decomposition from last slide
3NF Decomposition and Minimal Cover

- *How to compute Minimal Cover? This course DOES NOT require you to understand this, which is quite involved.*
Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.

- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!

- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.

- Note: even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)