Frequency Counts over Data Streams
The Problem ...

- Identify all elements whose current frequency exceeds support threshold $s = 0.1\%$.

Stream
Formal Definition

- All item whose true frequency exceeds sN are output. There are no false negatives.
- No item whose true frequency is less than $(s - \varepsilon)N$ is output.
- Estimated frequencies are less than the true frequencies by at most $\varepsilon N!$
A Related Problem ...

Identify all subsets of items whose current frequency exceeds $s = 0.1\%$.

Frequent Itemsets / Association Rules
Applications

Flow Identification at IP Router [EV01]

Iceberg Queries [FSGM+98]

Iceberg Datacubes [BR99 HPDW01]

Association Rules & Frequent Itemsets [AS94 SON95 Toi96 Hid99 HPY00 ...]
Presentation Outline ...

1. Lossy Counting
2. Sticky Sampling
3. Algorithm for Frequent Itemsets
Algorithm 1: Lossy Counting

Step 1: Divide the stream into \texttt{`windows'}`

Is window size a function of support \(s\)? Will fix later...
Lossy Counting in Action ...

At window boundary, decrement all counters by 1
Lossy Counting continued ...

At window boundary, decrement all counters by 1
Error Analysis

How much do we undercount?

If \(\text{current size of stream} = N \)
and \(\text{window-size} = \frac{1}{\epsilon} \)

then \(\text{frequency error} \leq \text{#windows} = \epsilon N \)

Rule of thumb:
Set \(\epsilon = 10\% \) of support \(s \)

Example:
Given support frequency \(s = 1\% \),
set error frequency \(\epsilon = 0.1\% \)
Output:
Elements with counter values exceeding $sN - \varepsilon N$

Approximation guarantees
- Frequencies underestimated by at most εN
- No false negatives
- False positives have true frequency at least $sN - \varepsilon N$

How many counters do we need?
Worst case: $1/\varepsilon \log (\varepsilon N)$ counters (see proof later)
Enhancements ...

Frequency Errors
For counter \((X, c)\), true frequency in \([c, c+\varepsilon N]\)

Trick: Remember window-id’s
For counter \((X, c, w)\), true frequency in \([c, c+w-1]\)

If \((w = 1)\), no error!

At the time of deletion, the true frequency of \(X\) is at most \(w\) which is less than \(\varepsilon N_w\)! \((N_w\) is the number of elements seen so far in the stream at the end of window \(w)\)

Batch Processing
Decrements after \(k\) windows
The Enhanced Algorithm

0. The data structure we keep is D, which has entries in the form of \((X, c, \Delta)\);

1. In window \(b\), an element \(X\) appears, if \(X\) is in \(D\), increase its count \(c\) by 1; otherwise, insert \((X, 1, b-1)\) into \(D\);

2. At the end of window \(b\), delete all entries if their \(c + \Delta \leq b\).
Worse Case Bound

How many counters do we need?

Worst case: $\frac{1}{\varepsilon} \log (\varepsilon N)$ counters

Let B be the current bucket id, d_i denote the number of entries we kept whose bucket id is $B-i+1$ for $i \in [1, B]$: The item corresponding to such entry must occur at least i times in bucket $B-i+1$ through B;

$$\sum_{i=1}^{j} i \times d_i \leq jw, \text{ for } j = 1, 2, \ldots B.$$

We claim: $$\sum_{i=1}^{j} d_i \leq \sum_{i=1}^{j} \frac{w}{i}, \text{ for } j = 1, 2, \ldots B$$

Prove By Induction.
Algorithm 2: Sticky Sampling

→ Create counters by sampling
→ Maintain exact counts thereafter

What rate should we sample?
Sticky Sampling contd...

For finite stream of length \(N \)

\[
\text{Sampling rate } = \frac{2}{N\epsilon} \log \frac{1}{(s\delta)}
\]

\(\delta = \text{probability of failure} \)

Output:

Elements with counter values exceeding \(sN - \epsilon N \)

Approximation guarantees (probabilistic)

- Frequencies underestimated by at most \(\epsilon N \)
- No false negatives
- False positives have true frequency at least \(sN - \epsilon N \)

Same Rule of thumb:

Set \(\epsilon = 10\% \text{ of support } s \)

Example:

- Given support threshold \(s = 1\% \),
- set error threshold \(\epsilon = 0.1\% \)
- set failure probability \(\delta = 0.01\% \)
Sampling rate?

Finite stream of length N
Sampling rate: \(\frac{2}{N\varepsilon \log 1/(s\delta)} \)

Infinite stream with unknown N
Gradually adjust sampling rate (discussed later)

In either case,
Expected number of counters = \(\frac{2}{\varepsilon \log 1/s\delta} \)

Independent of N!
Infinite Stream

Let $t = \frac{1}{\epsilon} \log(\frac{1}{s\delta})$
First $2t$, sample rate = 1
Next $2t$, sample rate = $1/2$
Next $4t$, sample rate = $1/4$
Next $8t$, sample rate = $1/8$

And, whenever sample rate changes, do:
For each entry kept, flip coin (with $p = 1/2$) continuously,
Until a head appears, for each tail, decrease the count
Of the entry by 1; remove the entry when its count is 0.
Result (proof in class)

Sticky sampling satisfies our requirement with Probability at least $1-\delta$ using at most $\frac{2}{\epsilon \log(1/s\delta)}$ expected number of entries.

Proof: In class, Please take notes.
Sticky Sampling Expected: $\frac{2}{\epsilon} \log \frac{1}{s\delta}$
Lossy Counting Worst Case: $\frac{1}{\epsilon} \log \epsilon N$

Support $s = 1\%$
Error $\epsilon = 0.1\%$
From elements to *sets* of elements ...
Frequent Itemsets Problem ...

Stream

- Identify all **subsets of items** whose current frequency exceeds $s = 0.1\%$.

Frequent Itemsets \Rightarrow Association Rules
Three Modules

- TRIE
- BUFFER
- SUBSET-GEN
Module 1: TRIE

Compact representation of frequent itemsets in lexicographic order.
Module 2: BUFFER

Compact representation as sequence of ints
Transactions sorted by item-id
Bitmap for transaction boundaries
Module 3: SUBSET-GEN

Frequency counts of subsets in lexicographic order
Overall Algorithm ...

Problem: Number of subsets is exponential!
SUBSET-GEN Pruning Rules

A-priori Pruning Rule

If set S is infrequent, every superset of S is infrequent.

Lossy Counting Pruning Rule

At each 'window boundary' decrement TRIE counters by 1.

Actually, 'Batch Deletion':
At each 'main memory buffer' boundary, decrement all TRIE counters by b.

See paper for details ...
Bottlenecks ...

BUFFER

3 3 3 4
2 2 1
2 1
3
1
1

SUBSET-GEN

3 3 3 4
2 2 1
1
1

TRIE

new TRIE

Consumes main memory
Consumes CPU time
Design Decisions for Performance

TRIE

Main memory bottleneck

Compact linear array

→ (element, counter, level) in preorder traversal
→ No pointers!

Tries are on disk

→ All of main memory devoted to BUFFER

Pair of tries

→ old and new (in chunks)

mmap() and madvise()

SUBSET-GEN

CPU bottleneck

Very fast implementation

→ See paper for details
Experiments ...

IBM synthetic dataset T10.I4.1000K
N = 1Million Avg Tran Size = 10 Input Size = 49MB

IBM synthetic dataset T15.I6.1000K
N = 1Million Avg Tran Size = 15 Input Size = 69MB

Frequent word pairs in 100K web documents
N = 100K Avg Tran Size = 134 Input Size = 54MB

Frequent word pairs in 806K Reuters newsreports
N = 806K Avg Tran Size = 61 Input Size = 210MB
What do we study?

For each dataset

- Support threshold s
- Length of stream N
- BUFFER size B
- Time taken t

Three independent variables
Fix one and vary two

Set $\varepsilon = 10\%$ of support s
Varying support s and BUFFER B

IBM 1M transactions

Reuters 806K docs

Fixed: Stream length N

Varying: BUFFER size B

Support threshold s
Varying length N and support s

IBM 1M transactions

Reuters 806K docs

Fixed: BUFFER size B

Varying: Stream length N

Support threshold s
Varying BUFFER B and support s

IBM 1M transactions

Reuters 806K docs

Fixed: Stream length N
Varying: BUFFER size B
Support threshold s
Comparison with fast A-priori

<table>
<thead>
<tr>
<th>Support</th>
<th>Time</th>
<th>Memory</th>
<th>Time</th>
<th>Memory</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>99 s</td>
<td>82 MB</td>
<td>111 s</td>
<td>12 MB</td>
<td>27 s</td>
<td>45 MB</td>
</tr>
<tr>
<td>0.002</td>
<td>25 s</td>
<td>53 MB</td>
<td>94 s</td>
<td>10 MB</td>
<td>15 s</td>
<td>45 MB</td>
</tr>
<tr>
<td>0.004</td>
<td>14 s</td>
<td>48 MB</td>
<td>65 s</td>
<td>7 MB</td>
<td>8 s</td>
<td>45 MB</td>
</tr>
<tr>
<td>0.006</td>
<td>13 s</td>
<td>48 MB</td>
<td>46 s</td>
<td>6 MB</td>
<td>6 s</td>
<td>45 MB</td>
</tr>
<tr>
<td>0.008</td>
<td>13 s</td>
<td>48 MB</td>
<td>34 s</td>
<td>5 MB</td>
<td>4 s</td>
<td>45 MB</td>
</tr>
<tr>
<td>0.010</td>
<td>14 s</td>
<td>48 MB</td>
<td>26 s</td>
<td>5 MB</td>
<td>4 s</td>
<td>45 MB</td>
</tr>
</tbody>
</table>

Dataset: IBM T10.I4.1000K with 1M transactions, average size 10.

Comparison with Iceberg Queries

Query: Identify all word pairs in 100K web documents which co-occur in at least 0.5% of the documents.

[FSGM+98] multiple pass algorithm:
7000 seconds with 30 MB memory

Our single-pass algorithm:
4500 seconds with 26 MB memory

Our algorithm would be much faster if allowed multiple passes!
Lessons Learnt ...

Optimizing for \#passes is wrong!

Small support $s \Rightarrow$ Too many frequent itemsets!
Time to redefine the problem itself?

Interesting combination of Theory and Systems.
Other Interesting Work

Frequency Counts over Sliding Windows

Multiple pass Algorithm for Frequent Itemsets

Iceberg Datacubes
Lossy Counting: A Practical algorithm for online frequency counting.

First ever single pass algorithm for Association Rules with user specified error guarantees.

Basic algorithm applicable to several problems.
Sticky Sampling Expected: $\frac{2}{\varepsilon} \log \frac{1}{s\delta}$
Lossy Counting Worst Case: $\frac{1}{\varepsilon} \log \varepsilon N$

<table>
<thead>
<tr>
<th>ε</th>
<th>s</th>
<th>SS worst</th>
<th>LC worst</th>
<th>SS Zipf</th>
<th>LC Zipf</th>
<th>SS Uniq</th>
<th>LC Uniq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>1.0%</td>
<td>27K</td>
<td>9K</td>
<td>6K</td>
<td>419</td>
<td>27K</td>
<td>1K</td>
</tr>
<tr>
<td>0.05%</td>
<td>0.5%</td>
<td>58K</td>
<td>17K</td>
<td>11K</td>
<td>709</td>
<td>58K</td>
<td>2K</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.1%</td>
<td>322K</td>
<td>69K</td>
<td>37K</td>
<td>2K</td>
<td>322K</td>
<td>10K</td>
</tr>
<tr>
<td>0.005%</td>
<td>0.05%</td>
<td>672K</td>
<td>124K</td>
<td>62K</td>
<td>4K</td>
<td>672K</td>
<td>20K</td>
</tr>
</tbody>
</table>

LC: Lossy Counting
SS: Sticky Sampling
Zipf: Zipfian distribution
Uniq: Unique elements