Tetrahedron Meshes

Linh Ha
Overview

- Fundamental Tetrahedron meshing
 - Meshing polyhedra
 - Tetrahedral shape
 - Delaunay refinements
 - Removing silver

- Variational Tetrahedral Meshing
Meshing Polyhedra

- Is that easy?
- A *Polyhedron* is union of convex polyhedra

\[P = \bigcap_{i \in I} H_i \]
Fig. 47. A non-convex polyhedron

- Faces are not necessarily simply connected
Facets and Segments

- Neighborhood of x
 \[N_\varepsilon = \left(x + \varepsilon \cdot b \right) \cap P \]
 - b: open unit ball

- Face figure of x
 \[x + \square_{\lambda > 0} \lambda \left(N_\varepsilon (x) - x \right) \]

- Face of P: closure of maximal collection of point with identical face figures
What does it look like?

1- Faces
 - Face figures a line
 - Polyhedra segment

2- Faces
 - Face figure a plane
 - Polyhedra facets
- 24 vertices, 30 segments, 11 faces
 - 6 segments and 3 faces are not non-connected
Tetrahedrization

- Tetrahedrization of P is a simplicial complex K whose underlying space is P: $|K|=P$
 - Only bounded polyhedra have tetrahedrization
 - Every vertex of P is vertex of K

- Is the number of vertices of K = P?
Is that easy?

- Prim – easy: 3 tetrahedrons
- The Schonhardt polyhedron? How many?
Ruppert and Seidel: the problem of deciding if a polyhedron can be tetrahedrized without inserting extra vertices is NP-hard and problem of deciding if a polyhedron can be tetrahedrized with only k additional vertices is NP-hard.
Every bounded polyhedron has a tetrahedration
Fencing algorithms

- Step1: Erect the fence of each segment.
- Step2: Triangulate the bottom facet of every cylinder and erect fences from the new segments.
- Step3: Decompose each wall into triangles and finally tetrahedrize each cylinder by constructing cones from an interior point to the boundary.
Limits

- Upper bound: $28m^2$ - number of tetrahedrons for m-segments Polyhedra
- Lower bound: $(n+1)^2$ with n : number of cut $m=14n+8$

Fig. 52. Polyhedron Q with two families of cuts almost meeting along the saddle surface
Tetrahedral Shape

- What is good and bad tetrahedra?
- Bad tetrahedra

Wedge

Needle

Cap

Sliver
Bad tetrahedral classification

- **Skinny**: vertices are close to a line

- **Flat**: vertices are close to a plane

Fig. 53. Five fuzzy types of skinny tetrahedra

Fig. 54. Four fuzzy types of flat tetrahedra
Quality Metrics

- **2D**: minimum angle in the triangulation
- **3D**:
 - **Radius-edge ratio**
 \[\rho = \rho(\sigma) = \frac{R}{L} \]
 - R: outer radius
 - L: shortest edge
 - **Aspect ratio**
 \[\vartheta = \vartheta(\sigma) = \frac{R}{r} \]
 - r: inner radius
 - **Volume ratio**
 \[\varphi(\sigma) = \frac{V}{L^3} \]
 - V: volume
Ratio properties

- A mesh of tetrahedra has *ratio property* if \(\rho \leq \rho_0 \) for all tetrahedra
 - For all triangles \(\rho \leq \rho_0 \)

- Characteristics:
 - *Claim A:* if abc is a triangle in K then
 \[
 \frac{1}{2\rho_0} \|a - b\| \leq \|a - c\| \leq 2\rho_0 \|a - b\|
 \]
 - Proof: geometry
 - Ratio properties
 \[
 \frac{R}{\rho_0} \leq \|a - c\| \leq 2R
 \]
 \[
 2R \geq \|a - b\| \geq \frac{R}{\rho_0}
 \]
Ratio property

- Denote $\eta_0 = \arctan 2\left(\rho_0 - \sqrt{\rho_0^2 - 1/4}\right)$

- Claim B: if angle between ab and ap less than η_0 then
 $$\frac{1}{2} \|a - b\| \leq \|a - p\| \leq 2\|a - b\|$$

Proof:

$$\|a - v\| = R - \sqrt{R - \|a - b\|^2 / 4}$$

$$= \frac{\|a - b\|^2 / 4}{R - \sqrt{R - \|a - b\|^2 / 4}} \geq \left(\rho_0 - \sqrt{\rho_0^2 - 1/4}\right)\|a - b\|$$

$$\angle bax = \arctan 2\left(\frac{\|x - v\|}{\|a - b\|}\right)$$

$$\geq \arctan 2\left(\rho_0 - \sqrt{\rho_0^2 - 1/4}\right)$$

$$= \eta_0$$
Length Variation and Constant degree

- **Length variation**: if ab, ap are edges in K

 \[\frac{||a - b||}{v_0} \leq ||a - p|| \leq v_0 ||a - b|| \]

 - Lengths of edges with common endpoint is bound

- **Constant degree**: Every vertex a in K belong to at most

 \[\delta_0 = \left(2v_0^2 + 1\right)^3 \]

 - However this constraint is too loose
Delaunay Triangulation

Canonical, associated to any point set.
Delaunay Triangulation

- Dual to Voronoi Diagram
- Connect Vertices Across Common Line
Properties of Delaunay triangulation

- maximizing the minimum angle in the triangulation:
 - Better lighting performance
 - Improvements on the accuracy
- Even stronger: lexicographically maximized sequence of angles
- Every triangle of a Delaunay triangulation has an empty circumcircle
Every tetrahedra of a Delaunay Tetrahedration has an empty circumsphere. However:
- max-min angle optimality in 2D doesn’t maintain
- Tetrahedra can have small dihedral angles.
Left: Delaunay tetrahedralization: have arbitrarily thin tetrahedron known as a *sliver*

Right: non-Delaunay tetrahedralization
Edge flip

Incremental algorithms in 2D: edge flips

In 3D: it is not so easy
Circumcircle as Orientation

- The Circumcircle test is an orientation test
- Let $p' = (p, \|p\|^2)$
Properties of the Space of Spheres

- Points below the cutting plane are inside the circle
- Also applies to triangular regions
Using Convex Hulls

Simple Algorithm

1. Project onto paraboloid.
2. Compute convex hull.
3. Project hull faces back to plane.
Advantages of Convex Hull Approach

- Many good Convex Hull Algorithms (e.g. QuickHull)
- Simple extension to arbitrary dimensions
- No strange infinite triangle initialization
Problems

- Segment that not cover by the edges
- Faces are not covered by triangles of D
 Have to add new points and update Delaunary tetrahedration
- well-spaced points generate only round or sliver Delaunay tetrahedra
Delaunary refinement

- Construct Delaunary tetrahedration has ratio property

- Definition
 - encroached upon sub – segment
 - encroached upon sub – facet
Refinement algorithms

- **Rule1**: If a subsegment is encroached upon, we split it by adding the mid-point as a new vertex to the Delaunay tetrahedrization.

- **Rule2**: If a subfacet is encroached upon, we split it by adding the circum-centre x as a new vertex to the Delaunay tetrahedrization.

- **Rule3**: If a tetrahedron inside P has $R/L > \rho_0$, then split the tetrahedron by adding the circumcentre x as a new vertex to the Delaunay tetrahedrization.

- Property: **Rule1** > **Rule2** > **Rule3**
Local density

- **Local feature size**: \(f : \mathbb{R}^3 \to \mathbb{R} \), \(f(x) \) varies slowly with \(x \)
- **Insertion radius**: \(r_{x} \) length of the shortest Delaunay edge with endpoint \(x \) immediately after adding \(x \)

Figure 3.14: The insertion radius of a vertex \(v \) is the distance to the nearest vertex when \(v \) first appears in the mesh. (a) If \(v \) is an input vertex, \(r_{v} \) is the distance to the nearest other input vertex. (b) If \(v \) is the midpoint of a subsegment encroached upon by a mesh vertex, \(r_{v} \) is the distance to that vertex. (c) If \(v \) is the midpoint of a subsegment encroached upon only by a rejected vertex, \(r_{v} \) is the radius of the subsegment’s diametral circle. (d) If \(v \) is the circumcenter of a skinny triangle, \(r_{v} \) is the radius of the circumcircle.
Radii andParents

- Parent vertex: $p(v)$ is the vertex that is “responsible” for the insertion of v
Radius claims

- Let x be a vertex of D and p is its parents, if it exits. Then $r_x \geq f(x)$ or $r_x \geq c \cdot r_p$ where $c = 1/\sqrt{2}$ if x has type 1 or 2 and $c = \rho_0$.
Graded meshes

- Ratio claim: Let x be a Delaunay vertex with parent and $r_x \geq c.r_p$ Then
 \[f(x) / r_x \leq 1 + f(p) / (c.r_p) \]

- Invariant: if x is a type I vertex in the Delaunay tetrahedrization, for $i=1..3$ then
 \[r_x \geq f(x) / C_i \]

- Conclusion:
 \[\|x - y\| \geq f(x) / (1 + C_1) \]
Silver exudation

- Silver exits frequently between well shaped tetrahedral inside Delaunay tetrahedration

Figure 4.2: A silver tetrahedron.
Variational Tetrahedral Meshing

Pierre Alliez
David Cohen-Steiner
Mariette Yvinec
Mathieu Desbrun
Goal

- Tetrahedral mesh generation
- Focus on:
 - quality: shape of elements
 - control over sizing
 - dictated by simulation
 - constrained by boundary
 - low number of elements
Quality Metrics

- 3D:
 - Radius-edge ratio \(\rho = \rho(\sigma) = \frac{R}{L} \), \(R \): outer radius, \(L \): shortest edge
 - Aspect ratio \(\vartheta = \vartheta(\sigma) = \frac{R}{r} \), \(r \): inner radius
 - Volume ratio \(\varphi(\sigma) = \frac{V}{L^3} \), \(V \): volume

In the paper use \textit{Radius ratio} = \textit{Aspect ratio} – “fair” to measure silver
Popular Meshing Approaches

- Advancing front
- Specific subdivision
 - octree
 - crystalline lattice
- Delaunay
 - refinement
 - sphere packing

Optimization:
- spring energy
- aspect ratios
- dihedral angles
- solid angles
- volumes
- edge lengths
- containing sphere radii
- etc.

[Freitag et al.; Amenta et al.]
Delaunay Triangulation

- Degree of freedom: vertex positions
Optimizing Vertex Placement

Improve compactness of Voronoi cells by minimizing

\[E = \sum_{j=1..k} \int_{x \in R_j} \rho(x) \left\| x - x_j \right\|^2 dx \]

Necessary condition for optimality: \textbf{Centroidal Voronoi Tessellation (CVT)}
Optimizing Vertex Placement

- **CVT [Du-Wang 03]**
 - best PL approximant
 - compact Voronoi cells
 - isotropic sampling

\[E_{CVT} = \sum_{i=1}^{N} \int_{V_i} \|x - x_i\|^2 \, dx \]

Vi: local cell

Best L1 approximation of paraboloid
Alas, Harder in 3D...

- well-spaced points generate only round or sliver Delaunay tetrahedra [Eppstein 01]
Alas, Harder in 3D...

- well-spaced points generate only round or sliver Delaunay tetrahedra
- regular tetrahedron does not tile space
 \[
 (360° / 70.53° = 5.1)
 \]

\[\text{dihedral angle of the regular tetrahedron} = \arccos\left(\frac{1}{3}\right) \sim 70.53°\]
Idea: Underlaid vs Overlaid

CVT
- best PL approximant
- compact Voronoi cells
- isotropic sampling

$$E_{CVT} = \sum_{i=1..N} \int_{V_i} \|x - x_i\|^2 dx$$

ODT [Chen 04]
- best PL interpolant
- compact simplices – not dual
- isotropic meshing

$$E_{ODT} = \frac{1}{n+1} \sum_{i=1..N} \int_{\Omega_i} \|x - x_i\|^2 dx$$

Best L1 approximation of paraboloid
Figure 4: Nomenclature: Left: We denote by Ω_i the 1-ring of vertex x_i. Middle: V_i is the Voronoi cell of vertex x_i. Right: The center of the circumcircle of triangle T_j, is denoted c_j, while its radius is denoted R_j.
Rationale Behind ODT

- Approximation theory:
 - linear interpolation: optimal shape of an element related to the Hessian of f [Shewchuk]

- $\text{Hessian}(\|x\|^2) = \text{Id}$
 - regular tetrahedron best
Which *PL interpolating mesh* best approximates the paraboloid?

- for **fixed vertex locations**
 - Delaunay triangulation is *the* optimal connectivity

- for **fixed connectivity**
 - min of quadratic energy leads to *the* optimal vertex locations
 - closed form as function of neighboring vertices
Optimizing Connectivity

- Delaunay triangulation is \textit{the} optimal connectivity
- Optimal connectivities minimize E_{ODT}
Optimizing Vertex Position

$$E_{ODT} = \frac{1}{4} \sum_i x_i^2 |\Omega_i| - \int_{\mathcal{M}} x^2 dx,$$

Simple derivation in x_i lead to optimal position in its 1-ring

$$x_i^* = -\frac{1}{2 |\Omega_i|} \sum_{T_j \in \Omega_i} \left(\nabla x_i |T_j| \left[\sum_{x_k \in T_j, x_k \neq x_i} ||x_k||^2 \right] \right).$$

$\nabla x_i |T_j|$ is the gradient of the volume of the tet T_j

Update vertex position

$$x_i^* = x_i - \frac{1}{2 |\Omega_i|} \sum_{T_j \in \Omega_i} \left(\nabla x_i |T_j| \left[\sum_{x_k \in T_j} ||x_i - x_k||^2 \right] \right)$$
Optimal Update Rule

\[x_i^* = \frac{1}{|\Omega_i|} \sum_{\tau_j \in \Omega_i} |\tau_j| c_j \]

circumcenter
Optimization

Alternate updates of

- connectivity (Delaunay triangulation)
- vertex locations
Optimization: Init

distribution of radius ratios

good
Optimization: Step 1

distribution of radius ratios

good
Optimization: Step 2

distribution of radius ratios

bad
good
Optimization: Step 50

distribution of radius ratios

good
Optimization: Step 50
Sizing Field

Goal reminder:
- minimize number of elements
- better approximate the boundary
- while preserving good shape of elements

Those are not independent!
- well-shaped elements iff K-Lipschitz sizing field [Ruppert, Miller et al.]
Automatic Sizing Field

Properties:
- size $\leq lfs$ (local feature size) on boundary
- sizing field = maximal K-Lipschitz

$$\mu (x) = \inf_{y \in \partial \Omega} \left[K \| x - y \| + lfs(y) \right]$$

Parameter
Sizing Field: Example
3D Example

\[x_i^* = \frac{1}{|\Omega|} \sum_{\tau_j \in \Omega_i} |\tau_j| \cdot C_j \]

local feature size sizing field
Algorithm

Read the input boundary mesh $\partial \Omega$
Setup Data Structure & Preprocessing
Compute sizing field μ
Generate initial sites \mathbf{x}_i inside Ω
Do

Construct Delaunay triangulation($\{\mathbf{x}_i\}$)
Move sites \mathbf{x}_i to their optimal positions \mathbf{x}_i^*

Until (convergence or stopping criterion)
Extract interior mesh
Result
Stanford Bunny
Hand

local feature size
Hand: Radius Ratios
Torso
(courtesy A.Olivier-Mangon & G.Drettakis)
Fandisk
Comparison with the Unit Mesh Approach
Conclusion

- Generate high quality isotropic tetrahedral meshes (improved aspect ratios)
- Simple alternated optimizations
 - connectivity: Delaunay
 - vertex positions: weighted circumcenters
 - Good in practice
- Limit
 - Approximate input boundary instead of conforming
 - Theoretical guarantees to be developed
Thank you for your attention