Scalable Multi-Query Optimization for SPARQL

Wangchao Le1 Anastasios Kementsietsidis2 Songyun Duan2 Feifei Li1

1University of Utah \hspace{1cm} 2IBM Research

April 6, 2012
Outline

1 Introduction
2 Preliminary
3 Our approach
4 Experiments
5 Conclusions
We are inundated with a large collection of RDF (Resource Description Framework) data.
We are inundated with a large collection of RDF (Resource Description Framework) data.

- DBpedia, Uniprot, Freebase etc

Internally ...

```
<rdf:RDF
   xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
   xmlns:dcterms="http://purl.org/dc/terms/"
   xmlns:doctors="http://example.org/doctors"
   xmlns:patients="http://example.org/patients">

   <rdf:Description rdf:about="urn:x-states:New York">
      <dcterms:alternative>NY</dcterms:alternative>
   </rdf:Description>

</rdf:RDF>
```
We are inundated with a large collection of RDF (Resource Description Framework) data.
- DBpedia, Uniprot, Freebase etc

Internally ...

```xml
<rdf:RDF
    xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
    xmlns:dcterms="http://purl.org/dc/terms/">
    <rdf:Description rdf:about="urn:x-states:New York">
        <dcterms:alternative>NY</dcterms:alternative>
    </rdf:Description>
</rdf:RDF>
```

Triple format:

```
```

subject predicate object
We are inundated with a large collection of RDF (Resource Description Framework) data.

- DBpedia, Uniprot, Freebase etc
- A large graph and encode rich semantics

Internally ...

```xml
<rdf:RDF
  xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
  xmlns:dcterms="http://purl.org/dc/terms/">
  <rdf:Description rdf:about="urn:x-states:New York">
    <dcterms:alternative>NY</dcterms:alternative>
  </rdf:Description>
</rdf:RDF>
```

Triple format:

```
```

subject predicate object
We are inundated with a large collection of RDF (Resource Description Framework) data.

- DBpedia, Uniprot, Freebase etc
- A large graph and encode rich semantics

Internally ...

```
<rdf:RDF
  xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
  xmlns:dcterms="http://purl.org/dc/terms/">
  <rdf:Description rdf:about="urn:x-states:New York">
    <dcterms:alternative>NY</dcterms:alternative>
  </rdf:Description>
</rdf:RDF>
```

Triple format:
```
```

Query language: SPARQL
Introduction

- We are inundated with a large collection of RDF (Resource Description Framework) data.
 - DBpedia, Uniprot, Freebase etc
 - A large graph and encode rich semantics
- Available engines to manage RDF data?

We are inundated with a large collection of RDF (Resource Description Framework) data.

- DBpedia, Uniprot, Freebase etc
- A large graph and encode rich semantics

Available engines to manage RDF data?

- **RDBMS**: Migrate RDF, e.g., Sesame, JenaSDB etc.
- **Generic RDF stores**: e.g., RDF3X, JenaTDB etc.

Introduction

SPARQL queries

RDF store

Q1
Q2
Q3
Q_{n-1} Q_n
- Observation: queries share common parts
- Multi-query optimization

![Diagram showing RDF store and SPARQL queries](image-url)
A tempting choice: turn to MQO in relational databases

[MQO88][MQO90][MQO00]

- SPARQL \leftrightarrow relational algebra [EPS08][FSR07].
- Exist quite a few relational solutions for RDF store.

A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]
- SPARQL↔relational algebra [EPS08][FSR07].
- Exist quite a few relational solutions for RDF store.

For SPARQL and RDF, new issues arise in practice.
A tempting choice: turn to MQO in relational databases [MQO88][MQO90][MQO00]

- SPARQL↔relational algebra [EPS08][FSR07].
- Exist quite a few relational solutions for RDF store.

For SPARQL and RDF, new issues arise in practice.
- Convert SPARQL to SQL: not all engines use RDBMS
- Conversion to SQL → a large number of joins
A tempting choice: turn to MQO in relational databases

- SPARQL ↔ relational algebra [EPS08][FSR07].
- Exist quite a few relational solutions for RDF store.

For SPARQL and RDF, new issues arise in practice.

- Convert SPARQL to SQL: not all engines use RDBMS
- Conversion to SQL → a large number of joins
- Store dependent solution
We focus on two types of queries
We focus on two types of queries

Type 1: \(Q \) := SELECT RD WHERE GP

Type 2: \(Q_{\text{OPT}} \) := SELECT RD WHERE GP (OPTIONAL GP\(_{\text{OPT}}\))+
We focus on two types of queries

Type 1: $Q := \text{SELECT RD WHERE GP}$

Type 2: $Q_{\text{OPT}} := \text{SELECT RD WHERE GP (OPTIONAL GP}_{\text{OPT}})^+$

(a) triple table D

<table>
<thead>
<tr>
<th>subj</th>
<th>pred</th>
<th>obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>name</td>
<td>"Alice"</td>
</tr>
<tr>
<td>p1</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@home</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@work</td>
</tr>
<tr>
<td>p1</td>
<td>www</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>p2</td>
<td>name</td>
<td>"Bob"</td>
</tr>
<tr>
<td>p2</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>name</td>
<td>"Ella"</td>
</tr>
<tr>
<td>p3</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>www</td>
<td>http://work/ella</td>
</tr>
<tr>
<td>p4</td>
<td>name</td>
<td>"Tim"</td>
</tr>
<tr>
<td>p4</td>
<td>zip</td>
<td>"11234"</td>
</tr>
</tbody>
</table>

(b) Example query Q_{OPT}

```sql
SELECT ?name
WHERE { ?x name ?name, ?x zip 10001,
}
```

(name)

"Alice"
"Bob"
"Ella"
We focus on two types of queries

Type 1: $Q := \text{SELECT RD WHERE GP}$

Type 2: $Q_{OPT} := \text{SELECT RD WHERE GP (OPTIONAL GP}_{OPT})^+$

(a) triple table D

<table>
<thead>
<tr>
<th>subj</th>
<th>pred</th>
<th>obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>name</td>
<td>"Alice"</td>
</tr>
<tr>
<td>p1</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@home</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@work</td>
</tr>
<tr>
<td>p1</td>
<td>www</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>p2</td>
<td>name</td>
<td>"Bob"</td>
</tr>
<tr>
<td>p2</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>name</td>
<td>"Ella"</td>
</tr>
<tr>
<td>p3</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>www</td>
<td>http://work/ella</td>
</tr>
<tr>
<td>p4</td>
<td>name</td>
<td>"Tim"</td>
</tr>
<tr>
<td>p4</td>
<td>zip</td>
<td>"11234"</td>
</tr>
</tbody>
</table>

(b) Example query Q_{OPT}

```
SELECT ?name, ?mail, ?hpage
WHERE { ?x name ?name, ?x zip 10001,
    OPTIONAL {?x mbox ?mail }
    OPTIONAL {?x www ?hpage } }
```
We focus on two types of queries

Type 1: \[Q :\text{=} \text{SELECT RD WHERE GP} \]

Type 2: \[Q_{\text{OPT}} :\text{=} \text{SELECT RD WHERE GP (OPTIONAL GP_{OPT})}^{\pm} \]

(a) triple table \(D \)

<table>
<thead>
<tr>
<th>subj</th>
<th>pred</th>
<th>obj</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>name</td>
<td>"Alice"</td>
</tr>
<tr>
<td>p1</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@home</td>
</tr>
<tr>
<td>p1</td>
<td>mbox</td>
<td>alice@work</td>
</tr>
<tr>
<td>p1</td>
<td>www</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>p2</td>
<td>name</td>
<td>"Bob"</td>
</tr>
<tr>
<td>p2</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>name</td>
<td>"Ella"</td>
</tr>
<tr>
<td>p3</td>
<td>zip</td>
<td>10001</td>
</tr>
<tr>
<td>p3</td>
<td>www</td>
<td>http://work/ella</td>
</tr>
<tr>
<td>p4</td>
<td>name</td>
<td>"Tim"</td>
</tr>
<tr>
<td>p4</td>
<td>zip</td>
<td>"11234"</td>
</tr>
</tbody>
</table>

(b) Example query \(Q_{\text{OPT}} \)

```
SELECT ?name , ?mail , ?hpage
WHERE { ?x name ?name , ?x zip 10001 ,
      OPTIONAL { ?x mbox ?mail }
      OPTIONAL { ?x www ?hpage }}
```

(c) Output \(Q_{\text{OPT}}(D) \)

<table>
<thead>
<tr>
<th>name</th>
<th>mail</th>
<th>hpage</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Alice"</td>
<td>alice@home</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Alice"</td>
<td>alice@work</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Bob"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Ella"</td>
<td></td>
<td>http://work/ella</td>
</tr>
</tbody>
</table>
We focus on two types of queries

Type 1: $Q := \text{SELECT RD WHERE GP}$

Type 2: $Q_{opt} := \text{SELECT RD WHERE GP (OPTIONAL GP}_{opt})^+$

Problem statement.
We focus on two types of queries

Type 1: $Q := \text{SELECT RD WHERE GP}$

Type 2: $Q_{\text{OPT}} := \text{SELECT RD WHERE GP (OPTIONAL GP}_{\text{OPT}}\text{)}^+$

Problem statement.

- Input: a set Q of **Type 1** queries and a data graph G
We focus on two types of queries

Type 1: \(Q := \text{SELECT RD WHERE GP} \)

Type 2: \(Q_{\text{OPT}} := \text{SELECT RD WHERE GP \ (OPTIONAL \ GP_{\text{OPT}})}^{+} \)

Problem statement.

- Input: a set \(Q \) of **Type 1** queries and a data graph \(G \)
- Output: a set of **rewritten** queries, \(Q_{\text{OPT}} \) of **Type 1** and **Type 2** queries
We focus on two types of queries

Type 1: \(Q \) := SELECT RD WHERE GP

Type 2: \(Q_{\text{OPT}} \) := SELECT RD WHERE GP (OPTIONAL GP\text{OPT})

Problem statement.

- Input: a set \(Q \) of Type 1 queries and a data graph \(G \)
- Output: a set of rewritten queries, \(Q_{\text{OPT}} \) of Type 1 and Type 2 queries
- Requirements:
 - soundness and completeness: \(Q_{\text{OPT}}(G) \equiv Q(G) \)
 - cost: \(\frac{T_r(Q)+T_e(Q_{\text{opt}})}{T_e(Q)} \leq 1 \)
Our approach

1. Introduction
2. Preliminary
3. Our approach
4. Experiments
5. Conclusions
Motivating example

(a) Query Q_1

(b) Query Q_2
Motivating example

(a) Query Q₁

(b) Query Q₂

- : constant
- : variable
Motivating example

(a) Query Q_1

(b) Query Q_2
Motivating example

(a) Query Q₁

(b) Query Q₂

SELECT *
WHERE { ?x P₁ ?z, ?y P₂ ?z,

}
Motivating example

SELECT *
WHERE { ?x P1 ?z, ?y P2 ?z,
OPTIONAL {?y P3 ?w, ?w P4 v1 }
}

(I) Structure only Q_{OPT}
Motivating example

SELECT *
WHERE { ?x P1 ?z, ?y P2 ?z,
 OPTIONAL {?y P3 ?w, ?w P4 v1 }
 OPTIONAL {?t P3 ?x, ?t P5 v1, ?w P4 v1 }
}

(I) Structure only Q_{OPT}
Motivating example

SELECT *
WHERE { ?x P1 ?z, ?y P2 ?z,
 OPTIONAL { ?y P3 ?w, ?w P4 v1 }
 OPTIONAL { ?t P3 ?x, ?t P5 v1, ?w P4 v1 }
}

OPTIONALs are evaluated on top of the common substructures
(intermediate results cached by engine).
Motivating example

(a) Query Q₁
(b) Query Q₂

<table>
<thead>
<tr>
<th>pattern p</th>
<th>(\alpha(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(?x) P₁ (?z)</td>
<td>30%</td>
</tr>
<tr>
<td>(?y) P₂ (?z)</td>
<td>20%</td>
</tr>
<tr>
<td>(?y) P₃ (?w)</td>
<td>18%</td>
</tr>
<tr>
<td>(?w) P₄ (v_1)</td>
<td>1%</td>
</tr>
<tr>
<td>(?t) P₅ (v_1)</td>
<td>2%</td>
</tr>
</tbody>
</table>

*Max common subquery is not selective

(II) Using cost in optimization
Motivating example

(a) Query Q₁
(b) Query Q₂

<table>
<thead>
<tr>
<th>pattern p</th>
<th>(\alpha(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(?x P₁ ?z)</td>
<td>30%</td>
</tr>
<tr>
<td>(?y P₂ ?z)</td>
<td>20%</td>
</tr>
<tr>
<td>(?y P₃ ?w)</td>
<td>18%</td>
</tr>
<tr>
<td>(?w P₄ v₁)</td>
<td>1%</td>
</tr>
<tr>
<td>(?t P₅ v₁)</td>
<td>2%</td>
</tr>
</tbody>
</table>

*Max common subquery is not selective

(II) Using cost in optimization
Motivating example

SELECT *
WHERE { ?w P4 v1,
 OPTIONAL { ?x1 P1 ?z1, ?y1 P2 ?z1, ?y1 P3 ?w }
 OPTIONAL { ?x2 P1 ?z2, ?y2 P2 ?z2, ?t2 P3 ?x2, ?t2 P5 v1 }
}

(II) Using cost in optimization
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

They often do not share one common subquery
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

- Similar queries can be optimized together

Diagram:
- Partition input queries
 - Group 1
 - Group 2
 - \(\cdots \)
 - Group \(k \)
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

- Similar queries can be optimized together
- Finding structure similarity is expensive
- Group by predicates
- Distance: Jaccard similarity of predicate sets
Our approach

\[Q = \{q_1, q_2, \ldots, q_n\} \]

Paritition input queries

Group 1

Group 2

\cdots

Group \(k\)

Rewriting

Rewriting

\cdots

Rewriting

• Similar queries can be optimized together
• Finding structure similarity is expensive
• Group by predicates
• Distance: Jaccard similarity of predicate sets
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

Paritition input queries

- Group 1
 - Rewriting

- Group 2
 - Rewriting

- \(\cdots \)
 - Rewriting

- Group \(k \)

\(\Rightarrow \) Recursively rewrite a subset of type 1 queries (hierarchically) \(\Rightarrow \) a set of type 2 queries
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

- Paritition input queries
 - Group 1
 - Group 2
 - \ldots
 - Group \(k \)
 - Rewriting
 - Rewriting
 - \ldots
 - Rewriting

 - Recursively rewrite a subset of type 1 queries (hierarchically) \(\rightarrow \) a set of type 2 queries
 - finding common edge subgraphs
 - optimizations to avoid bad efficiency
 - cost: guard against bad rewritings
 - approx. by the min selectivity in common subquery
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

Paritition input queries

Group 1 \quad \text{Group 2} \quad \cdots \quad \text{Group } k

Rewriting \quad \text{Rewriting} \quad \cdots \quad \text{Rewriting}

- Recursively rewrite a subset of type 1 queries (hierarchically) → a set of type 2 queries
 - finding common edge subgraphs
 - optimizations to avoid bad efficiency
 - cost: guard against bad rewritings
 - approx. by the min selectivity in common subquery

<table>
<thead>
<tr>
<th>pattern p</th>
<th>(\alpha(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(?x P_1 ?z)</td>
<td>30%</td>
</tr>
<tr>
<td>(?y P_2 ?z)</td>
<td>20%</td>
</tr>
<tr>
<td>(?y P_3 ?w)</td>
<td>18%</td>
</tr>
<tr>
<td>(?w P_4 v_1)</td>
<td>1%</td>
</tr>
<tr>
<td>(?t P_5 v_1)</td>
<td>2%</td>
</tr>
</tbody>
</table>
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

Partition input queries

Group 1 → Rewriting → Execution

Group 2 → Rewriting → Execution

\ldots

Group \(k \) → Rewriting → Execution

- Similar queries can be optimized together
- Finding structure similarity is expensive
- Group by predicates
- Distance: Jaccard similarity of predicate sets

Rewriting

- Recursively rewrite a subset of type 1 queries
- Finding common edge subgraphs
- Optimizations to avoid bad efficiency
- Cost: guard against bad rewritings
- Approx. by the min selectivity in common subquery

Execution (hierarchically) → a set of type 2 queries
Our approach

\[Q = \{ q_1, q_2, \ldots, q_n \} \]

Partition input queries

Group 1
Rewriting

Group 2
Rewriting

\ldots

Group \(k \)
Rewriting

Execution

Result distribution

\[r(q_1) \quad r(q_2) \quad r(q_n) \]
Our approach

- Related issues
Our approach

- Related issues
 - Distributing results, *i.e.*, **Type 2** query \rightarrow **Type 1** queries

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

RD of a **Type 1** query: *e.g.*, X and Z

↑↓

columns from results of the **Type 2** rewriting
Our approach

- Related issues
 - Distributing results, *i.e.*, **Type 2 query** → **Type 1 queries**

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

RD of a **Type 1 query**: e.g., X and Z

↑↓
columns from results of the **Type 2 rewriting**

- Soundness and completeness
Related issues

Distributing results, \textit{i.e.}, \textbf{Type 2 query} \rightarrow \textbf{Type 1 queries}

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>

RD of a \textbf{Type 1} query: e.g., X and Z

\[\uparrow\downarrow\]

columns from results of the \textbf{Type 2} rewriting

Soundness and completeness

Extensibility of the solution: more general queries

- handle variable predicates
- \textit{OPTIONAL} queries
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.

- RDF stores: Jena TDB 0.85 etc
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory
- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
- RDF stores: Jena TDB 0.85 etc
- Queries
 - Ensure randomness in structure, e.g., star, chain and circle
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

- Dataset
 - Extend LUBM benchmark generator:
 randomness in structure, variances of sel.

- RDF stores: Jena TDB 0.85 etc

- Queries

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset size</td>
<td>D</td>
<td>4M</td>
<td>3M to 9M</td>
</tr>
<tr>
<td>Number of queries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of query (num of triple patterns)</td>
<td></td>
<td>60 to 160</td>
<td>60 to 160</td>
</tr>
<tr>
<td>Number of seed queries</td>
<td>κ</td>
<td>6</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Size of seed queries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max selectivity of patterns in Q</td>
<td>α_{max}(Q)</td>
<td>random</td>
<td>0.1% to 4%</td>
</tr>
<tr>
<td>Min selectivity of patterns in Q</td>
<td>α_{min}(Q)</td>
<td>1%</td>
<td>0.1% to 4%</td>
</tr>
</tbody>
</table>
Experiments

- Implementation highlights
 - C++
 - 64-bit Linux, 2GHz Xeon(R) CPU, 4GB memory

- Dataset
 - Extend LUBM benchmark generator: randomness in structure, variances of sel.
 - RDF stores: Jena TDB 0.85 etc

- Queries

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset size</td>
<td>(D)</td>
<td>4M</td>
<td>3M to 9M</td>
</tr>
<tr>
<td>Number of queries</td>
<td>(</td>
<td>Q</td>
<td>)</td>
</tr>
<tr>
<td>Size of query (num of triple patterns)</td>
<td>(</td>
<td>Q</td>
<td>)</td>
</tr>
<tr>
<td>Number of seed queries</td>
<td>(\kappa)</td>
<td>6</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Size of seed queries</td>
<td>(</td>
<td>q_{cmn}</td>
<td>)</td>
</tr>
<tr>
<td>Max selectivity of patterns in Q</td>
<td>(\alpha_{max}(Q))</td>
<td>random</td>
<td>0.1% to 4%</td>
</tr>
<tr>
<td>Min selectivity of patterns in Q</td>
<td>(\alpha_{min}(Q))</td>
<td>1%</td>
<td>0.1% to 4%</td>
</tr>
</tbody>
</table>

- Rewriting w/ structure: **MQO-S**; rewriting w/ structure and cost: **MQO**
Experiments

- **Time on rewriting**
 - **MQO-S-C**: structure based rewriting
 - **MQO-C**: rewriting integrating with cost
Experiments

- Time on rewriting
 - MQO-S-C: structure based rewriting
 - MQO-C: rewriting integrating with cost

![Graph showing time on rewriting](image)

*Costly/bad rewritings are rejected → more rounds of comparisons.
Experiments

- Time on distributing results
 - MQO-S-P: parsing results from MQO-S
 - MQO-P: parsing results with MQO
Experiments

- Time on distributing results
 - MQO-S-P: parsing results from MQO-S
 - MQO-P: parsing results with MQO

Non-selective common subqueries increase the set of results.
Experiments

- Time on distributing results
 - MQO-S-P: parsing results from MQO-S
 - MQO-P: parsing results with MQO

*Non-selective common subqueries increase the set of results.

*Both rewriting and parsing are efficiently doable
Experiments

- Varying num of queries in a batch
 - No-MQO: no optimization
 - MQO-S: optimization based on structural rewriting
 - MQO: integrating cost
Experiments

- Varying num of queries in a batch
 - No-MQO: no optimization
 - MQO-S: optimization based on structural rewriting
 - MQO: integrating cost

Both reduce the num of queries to be executed
Experiments

- Varying num of queries in a batch
 - No-MQO: no optimization
 - MQO-S: optimization based on structural rewriting
 - MQO: integrating cost

![Graph showing time in seconds for varying query sizes with different optimization methods.]
Experiments

- Varying min. selectivity in seed queries
 - **No-MQO**: no optimization
 - **MQO-S**: optimization based on structural rewriting
 - **MQO**: integrating cost
Experiments

- Varying min. selectivity in seed queries
 - **No-MQO**: no optimization
 - **MQO-S**: optimization based on structural rewriting
 - **MQO**: integrating cost

MQO: reject more bad rewritings; MQO-S: not sensitive
Experiments

- Varying min. selectivity in seed queries
 - **No-MQO**: no optimization
 - **MQO-S**: optimization based on structural rewriting
 - **MQO**: integrating cost

![Graph showing the relationship between \(\alpha_{min}(q_{cmn}) \) and time (seconds) for No-MQO, MQO-S, and MQO.](image)
• Varying seed size
 MQO-S: optimization based on structural rewriting
 MQO: integrating cost
 percentage = $\frac{T_e(\text{common subquery})}{T_e(Q_{opt})} \times 100\%$
Experiments

- Varying seed size
 MQO-S: optimization based on structural rewriting
 MQO: integrating cost
 percentage = \(\frac{T_e(\text{common subquery})}{T_e(Q_{opt})} \times 100\% \)

MQO-S: up to 25% time on optional
Conclusions

- In dealing RDF data on the Web, store independency is important.
- Combining SPARQL language and graph algorithms can achieve MQO, i.e., by rewriting queries.
- Cost must be taken in consideration during rewriting.
Thank You

Q and A
Our approach

- Partition input queries
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

Distance: Jaccard similarity on predicates
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

Distance: Jaccard similarity on predicates
- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

Distance: Jaccard similarity on predicates
- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity
- Grouping: k-means
Our approach

- Partition input queries
 - Object: similar queries can be optimized together in rewriting

Distance: Jaccard similarity on predicates
- Represent each query as a set of predicates.
- Measure the similarity of a pair of queries by set similarity
- Grouping: k-means
Hierarchical rewriting and clustering (inside a group)
Our approach

- Hierarchical rewriting and clustering (inside a group)
 Rewrite pairs of queries bottom up
Our approach

- Hierarchical rewriting and clustering (inside a group)
 Rewrite pairs of queries bottom up
Our approach

- Hierarchical rewriting and clustering (inside a group)

 Rewrite pairs of queries bottom up
 Pair up queries with max Jaccard similarity
Hierarchical rewriting and clustering (inside a group)

Rewrite pairs of queries bottom up
Pair up queries with max Jaccard similarity
Our approach

- Hierarchical rewriting and clustering (inside a group)

 Rewrite pairs of queries bottom up
 Pair up queries with max Jaccard similarity

- Rewriting → finding maximal common triple patterns
- In the language of graph . . .
Our approach

- Hierarchical rewriting and clustering (inside a group)
 - Rewrite pairs of queries bottom up
 - Pair up queries with max Jaccard similarity

- Rewriting → finding maximal common triple patterns
- In the language of graph ...

Our approach

- Hierarchical rewriting and clustering (inside a group)
 - Rewrite pairs of queries bottom up
 - Pair up queries with max Jaccard similarity

- Rewriting → finding maximal common triple patterns
- In the language of graph . . .

 - maximal common connected edge subgraphs
Our approach

- Hierarchical rewriting and clustering (inside a group)

 Rewrite pairs of queries bottom up
 Pair up queries with max Jaccard similarity

- Rewriting \rightarrow finding maximal common triple patterns
- In the language of graph . . .

 - maximal common connected edge subgraphs
 \rightarrow maximal common connected *induced* sugraphs in linegraphs
Our approach

- Hierarchical rewriting and clustering (inside a group)

 Rewrite pairs of queries bottom up
 Pair up queries with max Jaccard similarity

- Rewriting \rightarrow finding maximal common triple patterns

- In the language of graph \ldots

 - maximal common connected edge subgraphs
 \rightarrow maximal common connected *induced* subgraphs in linegraphs
 \rightarrow maximal cliques in the product graph
Our approach

(a) Query Q_1
(b) Query Q_2
(c) Query Q_3
(d) Query Q_4
Our approach

- Linegraph: invert vertices and edges
Our approach

- Linegraph: invert vertices and edges
- sub—sub: ℓ_0, sub—obj: ℓ_1, obj—sub: ℓ_2, obj—obj: ℓ_3
Our approach

- Linegraph: invert vertices and edges
 - sub–sub: ℓ_0, sub–obj: ℓ_1, obj–sub: ℓ_2, obj–obj: ℓ_3

- Product graph: simultaneous walk
Our approach

- **Linegraph:** invert vertices and edges
- **sub-sub:** ℓ_0, **sub–obj:** ℓ_1, **obj–sub:** ℓ_2, **obj–obj:** ℓ_3

- **Product graph:** simultaneous walk

(a) Query Q_1 (b) Query Q_2 (c) Query Q_3 (d) Query Q_4

(a) $\mathcal{L}(Q_1)$ (b) $\mathcal{L}(Q_2)$ (c) $\mathcal{L}(Q_3)$ (d) $\mathcal{L}(Q_4)$
Our approach

- **Linegraph**: invert vertices and edges
- **sub–sub:** ℓ_0, **sub–obj:** ℓ_1, **obj–sub:** ℓ_2, **obj–obj:** ℓ_3

- **Product graph**: simultaneous walk

The triangle (clique) highlights the common subgraph composed by

graph query pattern 1 graph query pattern 2

The triangle (clique) highlights the common subgraph composed by ■ x ●
Our approach

- Linegraph: invert vertices and edges
- sub–sub: ℓ_0, sub–obj: ℓ_1, obj–sub: ℓ_2, obj–obj: ℓ_3

- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection

The triangle (clique) highlights the common subgraph composed by graph query pattern 1 and graph query pattern 2.
Our approach

- Linegraph: invert vertices and edges
- sub–sub: \(\ell_0 \), sub–obj: \(\ell_1 \), obj–sub: \(\ell_2 \), obj–obj: \(\ell_3 \)

- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection
- optimize the product graph

The triangle (clique) highlights the common subgraph composed by □ × ●
Our approach

- Linegraph: invert vertices and edges
- \(\text{sub-sub: } \ell_0, \text{sub-obj: } \ell_1, \text{obj-sub: } \ell_2, \text{obj-obj: } \ell_3 \)

- product graph: simultaneous walk
- blowup in size, esp. > 2 queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants
Our approach

- Linegraph: invert vertices and edges
- sub–sub: ℓ_0, sub–obj: ℓ_1, obj–sub: ℓ_2, obj–obj: ℓ_3

- product graph: simultaneous walk
- blowup in size, esp. >2 queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants
- prune vertices with non-common neighborhoods
Our approach

- Linegraph: invert vertices and edges
- \(\text{sub-sub:}\ell_0, \text{sub-obj:}\ell_1, \text{obj-sub:}\ell_2, \text{obj-obj:}\ell_3 \)

- product graph: simultaneous walk
- blowup in size, esp. \(> 2 \) queries affect clique detection
- optimize the product graph

- prune non-common predicates
- check the constants
- prune vertices with non-common neighborhoods

\[\mathcal{L}(G_{P_p}): \]
\[\ell_3 \quad \ell_3 \]
\[P_1 \quad P_2 \]

\[S: \]
\[P_3 \quad P_4 \]
Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting
Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting

 - **Structure**: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting

 - **Structure**: maximize size of the common subquery in a rewriting

 - Evaluation on cost: guard against bad rewritings

 - Measure: min selectivity in the common subquery for approximation
Our approach

- Find maximal cliques in the product graph \[\text{[CLQ02][CLQ03]}\]

- Integrate cost into rewriting
 - **Structure**: maximize size of the common subquery in a rewriting
 - Evaluation on cost: guard against bad rewritings
 - Measure: min selectivity in the common subquery for approximation
 - **Cost**: discard bad rewritings, keep good ones in hierarchical rewriting
Our approach

- Find maximal cliques in the product graph [CLQ02][CLQ03]

- Integrate cost into rewriting

 Structure: maximize size of the common subquery in a rewriting

 Evaluation on cost: guard against bad rewritings

 Measure: min selectivity in the common subquery for approximation

 Cost: discard bad rewritings, keep good ones in hierarchical rewriting
Our approach

- Find maximal cliques in the product graph \[\text{[CLQ02][CLQ03]}\]

- Integrate cost into rewriting

 - **Structure**: maximize size of the common subquery in a rewriting
 - **Evaluation on cost**: guard against bad rewritings
 - **Measure**: min selectivity in the common subquery for approximation
 - **Cost**: discard bad rewritings, keep good ones in hierarchical rewriting

![Diagram showing the rewritings process with selectivity drops](image-url)
Our approach

- Related issues
Our approach

- Related issues
 - Distributing results, *i.e.*, **Type 2 query**→**Type 1 queries**

<table>
<thead>
<tr>
<th>name</th>
<th>mail</th>
<th>hpage</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Alice"</td>
<td>alice@home</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Bob"</td>
<td>alice@work</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Ella"</td>
<td></td>
<td>http://work/ella</td>
</tr>
</tbody>
</table>

RD of a **Type 1 query**

↑↓

columns from results of the **Type 2 rewriting**
Our approach

- Related issues
 - Distributing results, i.e., **Type 2 query** → **Type 1 queries**

<table>
<thead>
<tr>
<th>name</th>
<th>mail</th>
<th>hpage</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Alice"</td>
<td>alice@home</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Alice"</td>
<td>alice@work</td>
<td>http://home/alice</td>
</tr>
<tr>
<td>"Bob"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Ella"</td>
<td></td>
<td>http://work/ella</td>
</tr>
</tbody>
</table>

RD of a **Type 1 query**

↑↓

columns from results of the **Type 2 rewriting**

- Soundness and completeness
Our approach

- Related issues
 - Distributing results, \textit{i.e.}, \textbf{Type 2} query \rightarrow \textbf{Type 1} queries

 \begin{tabular}{|l|l|l|}
 \hline
 name & mail & hpage \\
 \hline
 "Alice" & alice@home & http://home/alice \\
 "Alice" & alice@work & http://home/alice \\
 "Bob" & & \\
 "Ella" & & http://work/ella \\
 \hline
 \end{tabular}

 RD of a \textbf{Type 1} query
 \begin{align*}
 \uparrow \downarrow
 \end{align*}

 columns from results of the \textbf{Type 2} rewriting

 - Soundness and completeness
 - Extensibility of the solution: more general queries
 \begin{itemize}
 \item handle variable predicates
 \item nested OPTIONALs
 \end{itemize}