
Hardware Prediction of OS Run-Length
For Fine-Grained Resource Customization

David Nellans, Kshitij Sudan, Rajeev Balasubramonian, Erik Brunvand
School of Computing, University of Utah

Salt Lake City, Utah 84112
{dnellans, kshitij, rajeev, elb}@cs.utah.edu

Abstract—In the past ten years, computer architecture has seen
a paradigm shift from emphasizing single thread performance
to energy efficient, throughput oriented, chip multiprocessors.
Several studies have suggested that it may be worthwhile to off-
load execution of the operating system (OS) to one or more
of these cores, or reconfigure hardware during OS execution.
To be effective, these techniques must balance the cost of off-
loading or re-configuration, versus the potential benefits, which
are typically unknown at decision time. These decision points
are typically implemented by manually instrumenting a few
OS routines (out of hundreds). Such a preliminary research
effort cannot be sustained across several operating systems
and hardware configurations. We argue that decisions made in
software are often sub-optimal because they are expensive in
terms of run-time overhead and because applications vary in their
use of OS features. We propose that these decision mechanisms
should be supported through a hardware based OS run-length
predictor, that removes the onus from OS developers. Our final
design results in a 95% prediction accuracy for OS intensive
applications, while requiring only 2 KB of storage.

I. INTRODUCTION

In the era of plentiful transistor budgets, it is expected that
processors will accommodate tens to hundreds of processing
cores. Given the abundance of cores, it may be beneficial
to allocate some chip area for special-purpose hardware that
is customized to execute common code patterns. One such
common code is the operating system (OS). Hardware cus-
tomization for OS execution has high potential because the
OS can constitute a dominant portion of many important
workloads such as webservers, databases, and middleware
systems [2], [5], [6].

Prior studies [2], [4], [5] have advocated that selected OS
system calls be off-loaded to a specialized OS core. This can
yield performance improvements because (i) user threads need
not compete with the OS for cache/ CPU/ branch predictor
resources, and (ii) OS invocations from different threads in-
teract constructively at the shared OS core to yield better cache
and branch predictor hit rates. Further, in a heterogeneous
chip multiprocessor, the OS core could be customized for
energy-efficient operation [4], [5] because several modern
features (such as deep speculation) have been shown to not
benefit OS codes. An alternate technique, with similar goals,
reconfigures the hardware of an existing processor to disable
these aggressive architectural features if they do not benefit
the OS or application [3].

Off-loading implementations have been proposed that range

from using the OS’ internal process migration methods [4], to
layering a lightweight virtual machine under the OS to trans-
parently migrate processes [2]. In re-configuration, decisions
about when to modify hardware resources are made when
serializing instructions within OS routines are encountered.
In all previous studies we are aware of, the decision about
which OS sequences are candidates for custom execution, has
been made in software, utilizing either static offline profiling
or developer intuition. This process is both cumbersome and
inaccurate. Firstly, there are many hundreds of system calls
and it will be extremely time-consuming to manually select
and instrument candidate system calls for each possible OS/
hardware configuration. Secondly, OS utilization varies greatly
across applications and decisions based on profiled averages
will be highly sub-optimal for many applications.

II. HARDWARE-BASED DECISION-MAKING

Instead of a software instrumentation process based on pro-
filed analysis, we propose a hardware-based mechanism that
simplifies the task of the OS developer and makes high quality
decisions about the benefits of customized OS execution with
minimal runtime overhead.

A. Hardware Prediction of OS Run-Length

We believe that operating system run-length is the best
indicator of whether customization will be beneficial. This
is simply because the overhead of customization is amor-
tized better if the OS routine is longer. The length of the
OS invocation is usually a direct function of the processor
architected state (which captures input to system calls). We
therefore propose a new hardware predictor of OS run-length
that XOR hashes the values of various architected registers.
After evaluating many register combinations, the following
registers were chosen for the SPARC architecture: PSTATE
(contains information about privilege state, masked exceptions,
FP enable, etc.), g0 and g1 (global registers), and i0 and i1
(input argument registers). The XOR of these registers yields a
64-bit value (that we refer to as AState) that encodes pertinent
information about the type of OS invocation, input values,
and the execution environment. Every time there is a switch
to privileged execution mode, the AState value is used to index
into a predictor table that keeps track of the invocation length
the last time such an AState index was observed, as shown in
Figure 1.



PSTATE

XOR

Registers

G0

G1

I0

I1

AState

Run
Length Confidence

Last 3 OS
Invocation Lengths

1 32

if(confidence = 0):
average(last 3)

else:
predicted

Predicted
Run Length

Actual OS
Run Length

Predicted
Within 5% Actual?

Yes – Increment
No – Decrement

Always Update With Actual

Fig. 1. History based OS run-length predictor functional diagram.

Each entry in the table also maintains a prediction con-
fidence value, a 2-bit saturating counter that is incremented
on a prediction within ±5% of the actual, and decremented
otherwise. If the confidence value is 0, we find that it is more
reliable to make a “global” prediction, i.e., we simply take
the average run length of the last three observed invocations
(regardless of their AStates). This works well because we
observe that OS invocation lengths tend to be clustered and a
global prediction can be better than a low-confidence “local”
prediction. For our workloads, we observed that a fully-
associative predictor table with 200 entries yields close to
optimal (infinite history) performance and requires only 2 KB
storage space. The 200-entry table is organized as a CAM
with the 64-bit AState value and prediction stored per entry. A
direct-mapped RAM structure with 1500 entries also provides
similar accuracy and has a storage requirement of 3.3 KB. This
table is tag-less and the least significant bits of the AState are
used as the index.

Averaged across all benchmarks, this simple predictor is
able to precisely predict the run length of 73.6% of all
privileged instruction invocations, and predict within ±5%
the actual run length an additional 24.8% of the time. Large
prediction errors most often occur when the processor is
executing in privileged mode, but interrupts have not been
disabled. In this case, it is possible for OS execution to be
interrupted by one or more additional routines before the
original routine is completed. These interrupts typically extend
the duration of OS invocations, almost never decreasing it.
As a result, our mispredictions tend to underestimate OS
run-lengths, resulting in some OS customization possibly not
occurring, based on a threshold decision.

B. Binary Decisions and Dynamic Estimation of N

While the hardware predictor provides a discrete prediction
of OS run-length, the customization decision must distill this
into a binary prediction indicating if the run-length exceeds N
instructions and if customization should occur. Figure 2 shows
the accuracy of binary predictions for various values of N . For
example, if customization should occur only on OS invocation
run lengths greater than 500 instructions, then our predic-
tor makes the correct customization decision 94.8%, 93.4%,

10

20

30

40

50

60

70

80

90

100

%
 P

re
d

ic
ti

o
n

s 
C

o
rr

e
ct

Apache SPECjbb Derby Compute AVG

0

10

20

30

40

50

60

70

80

90

100

0 50 100 250 500 1,000 2,500 5,000 7,500 10,000

%
 P

re
d

ic
ti

o
n

s 
C

o
rr

e
ct

Length of Binary Predicted OS Run-Length

Apache SPECjbb Derby Compute AVG

Fig. 2. Accuracy of hardware OS run-length predictions when making binary
threshold based decisions.

96.8%, and 99.6% of the time for Apache, SPECjbb2005,
Derby and the average of all compute benchmarks, respec-
tively. While more space-efficient prediction algorithms pos-
sibly exist, we observe little room for improvement in terms
of predictor accuracy.

The second component of a hardware assisted customization
policy is the estimation of N that yields optimal behavior
in terms of say, performance or energy-delay product (EDP).
For this estimation of N , we rely on algorithms described in
past work to select an optimal hardware configuration [1].
If the hardware system must select one of a few possible N
thresholds at run-time, it is easiest to sample behavior with
each of these configurations at the start of every program phase
and employ the optimal configuration until the next program
phase change is detected. For our experiments, we use very
coarse-grained values of N (0, 100, 1,000, 5,000, 10,000).
Increasing the resolution at which N can vary will increase
the adaptability of the system, but it comes at the expense of
increased sampling overhead.

In example experiments, using L2 cache hit-rate as the
feedback metric, our hardware predictor had an average run-
time overhead of <1% when instrumenting all possible OS
entry points, compared to 22.8% for a similar software based
implementation.

REFERENCES

[1] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynamically
Managing the Communication-Parallelism Trade-Off in Future Clustered
Processors,” in Proceedings of ISCA-30, June 2003, pp. 275–286.

[2] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation Spreading:
Employing Hardware Migration to Specialize CMP Cores On-the-Fly,”
in ASPLOS-XII. New York, NY, USA: ACM, 2006, pp. 283–292.

[3] T. Li, L. John, A. Sivasubramaniam, N. Vijaykrishnan, and J. Rubio,
“Understanding and Improving Operating System Effects in Control Flow
Prediction,” SIGOPS - Operating Systems Review, vol. 36, no. 5, pp. 68–
80, December 2002.

[4] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar,
“Using Asymmetric Single-ISA CMPs to Save Energy on Operating
Systems,” IEEE Micro, vol. 28, no. 3, pp. 26–41, May-June 2008.

[5] D. Nellans, R. Balasubramonian, and E. Brunvand, “A Case for Increased
Operating System Support in Chip Multi-Processors,” in Proceedings of
the 2nd IBM Watson Conference on Interaction between Architecture,
Circuits, and Compilers, September 2005.

[6] J. Redstone, S. J. Eggers, and H. M. Levy, “An Analysis of Operating
System Behavior on a Simultaneous Multithreaded Architecture,” in
ASPLOS, 2000.


