SeaCat: an SDN End-to-end Application Containment Architecture

Enabling Secure Role Based Access To Sensitive Healthcare Data

Junguk Cho, David Johnson, Makito Kano, Kobus Van der Merwe and Brent Elieson
Motivation

• “Everything” is networked
 – Nearly all business applications assume network availability

• Also true in healthcare
 – Accessing patient records
 – Remote diagnoses and consultation
 – In-home monitoring
 – Healthcare analytics
 – Plus “regular” vocational applications
 ● HR/payroll functions, accessing domain specific literature
 – Plus non vocational use
 ● Browsing the web, social networking etc.
Motivation cont.

- Problem:
 - Same individual, using same device potentially using several of these applications simultaneously
 - Applications have very different security and performance constraints:
 - Healthcare records: stringent regulatory privacy and security requirements
 - In-home patient monitoring: different privacy and security needs + reliability and soft real time guarantees
 - Web use: no impact on core healthcare applications
 - Devices are increasingly mobile (tablets, laptops, smartphones)
 - Often not part of managed and trusted enterprise environment
Motivation cont.

• Current approaches, combinations of:
 – Device scans when new devices attach to network
 – Run applications on application servers with thin clients on devices
 – Complex network and server access control polices

• Inadequate:
 – Device with up-to-date patch levels might still contain malware
 – Application servers with thin clients constrain the type of applications that can be used
 – Access control policies only deal with access. Provide no protection once data is accessed
Motivation cont.

• Problem generalizes to broad range of access to sensitive data
• Different sets of regulations/practices
 – Protected health information (PHI)
 • HIPAA regulations
 – Student educational records
 • FERPA regulations
 – Federal government work
 • FISMA regulations
 – Business requirements
 • PCI DSS regulations
 – Institutional requirements
 • IRB regulations
SeaCat Approach

• Combine SDN and application containment:
 – End-to-end application containment

• Treat mobile device as “semi-trusted” SDN domain
 – Inter-domain SDN interaction to tie in

• Non-healthcare apps:
 – default context

• Healthcare app:
 – dynamic app specific context
 – app and data contained in this end-to-end context
Threat Model

• Concerned with security and performance of health care applications used from variety of devices in a health care environment

• Assume healthcare applications can be trusted
 – different from conventional threat model where device needs to be protected against untrusted applications

• Specific concerns:
 – Unauthorized access
 • role based authentication and policies
 – Data leakage
 • end-to-end application containment
 – Resource guarantees
 • context based resource allocation with preemption
 – Denial of service
 • resource guarantees plus separation of resources
SeaCat Architecture:
Endpoint Containment

- Uses lightweight containers
 - Linux containers
- All applications execute in containers:
 - move “regular apps” into default container
- Only SeaCat Trusted Daemon left in root namespace
SeaCat Architecture:
Endpoint Containment

- SeaCat Trusted Daemon manages containers:
 - Set default container up: apps unaware that anything changed
 - Use Overlay FS to restrict container storage accesses
 - Dynamically create secure app container(s)
SeaCat Architecture: Endpoint Network Containment

- **SeaCat Trusted Daemon:**
 - Manages endpoint SDN domain
- **Single switch domain:**
 - Sets up context for default apps
 - Sets up context for secure apps: based on interaction with enterprise SDN
SeaCat Architecture:
Enterprise Network Containment

• SeaCat Server:
 – **Manages enterprise SDN domain**
 • Sets up context for secure apps
 • Includes SDN-enabled WiFi
 – **Interacts with SeaCat trusted daemon in endpoint**
 • Instructs trusted daemon to start secure container
 • Coordinates SDN across domains
SeaCat Architecture: Putting it all together

- Enterprise network treats each mobile endpoint as semi-trusted SDN domain
- Secure app user: authenticates using “normal” single-sign-on (SSO) technology
 - **SeaCat server integrated with SSO**
 - Successful authentication triggers:
 - Creation of app specific SDN context in enterprise
 - Signaling to endpoint SDN to:
 - Create secure container
 - Create endpoint app specific SDN context
 - Ties to enterprise SDN context
- App and data remains in this secure end-to-end context
- When app exits:
 - Complete context is destroyed
SeaCat Workflow/Interaction
SeaCat Demo

• Mobile endpoint:
 – Linux WiFi-enabled tablet
 – With SeaCat Trusted Daemon:
 • Container and SDN management

• Enterprise network:
 – SDN enabled WiFi access point
 • Tallac Networks
 • Virtual APs
 • Mapped to OpenFlow switch
 – Rest of enterprise SDN emulated in a Mininet instance

• SSO:
 – Uses Shibboleth SSO
 – SeaCat (Service Provider) to realize SeaCat functionality

• Medical application:
 – OpenMRS (Medical Record System)
Status

• Have working prototype...

• Looking for partners to do a trial deployment...