

On Mapping Parallel
Algorithms into Parallel

Architectures
By Francine Berman and Lawrence Snyder

Presented by Chris Eldred
DOE Computational Science Graduate Fellow

Department of Atmospheric Science, University of Utah

Caveats

● I am not a computer science major- graph
theory, formal language theory and
algorithm analysis is way past what I know

● Feel free to interrupt me at any times to
ask questions or tell me that what I am
saying doesn't make sense/is just plain
wrong

● My focus here is going to be on the big
picture issues and the application of this
technique- not the details

Outline

● Mapping Problem
– Topological Variation

– Cardinality Variation

● Solution
– Contraction

– Embedding

– Multiplexing

● Conclusions

Mapping Problem

● The mapping problem is the issue that arises when
the communication structure of a parallel algorithm is
different from the interconnection structure of a
parallel machine (topological variation) or the number
of processes used by the algorithm is greater than
the number of processing units present (cardinality
variation)

● The authors present a solution for a class of common
parallel interconnections structures that include:
shuffle-exchange networks, hypercubes, square
meshes, linear systolic arrays, cube-connected
cycles, and complete binary trees

Topological Variation

● Topological variation is when the
communications structure of an algorithm
differs from the interconnection structure of
a parallel machine

● The problem then is how to map the
communication in the algorithm to the
machine communication structure

– Efficiency is the key metric here

– We want to minimize the amount of additional
communication overhead incurred by the
mapping

Cardinality Variation

● Cardinality variation occurs when the
number of processes in the parallel
algorithm is greater than the number of
processing units (however those are
defined) in the parallel machine

● The problem then becomes how to map
these processes to processing units

– Again efficiency is the key metric

– We want to minimize the multiplexing
overhead

Solution

● Parallel algorithms are represented as
communication graphs

– It is assumed that all communication paths
have the same length and bandwidth- BIG
ASSUMPTION

● The authors outline a three-part solution to the
mapping problem (solving both topological and
cardinality variation)

– Contraction

– Embedding

– Multiplexing

Contraction

● Gets rid of cardinality variation in the absence of
topological variation

● Embeds Gn into Gk- where the graphs are from
the same family and Gk is smaller than Gn

● Done using edge grammars and k-truncation

● Evaluated using weighting functions to measure
the distribution of nodes and communication
paths on the contracted graph

– Example in the paper compares 2 different
edges grammars that produce different
contractions

Embedding

● Eliminates topological variation in the absence of
cardinality variation

● Maps Gk to H, where H is the parallel
interconnection architecture, with 1 process per
processing unit

● Done using either known layout results or the
approximation algorithm from the paper

● Evaluated using cost functions that measure how
far a communication path must be stretched

Multiplexing

● Combines the previous two steps to
resolve both cardinality and topological
variation

● Implement Gn on image of Gk in H using
multiplexing

● Not really discussed in the paper

Bottom-Line

● The process outlined by the authors
provides a way to automate the mapping of
parallel algorithms to a wide class of
parallel interconnect architectures

– There are assumptions (same length and
bandwidth) about communication paths
that do not hold in modern parallel
architectures, especially in the new
petascale and exascale machines

Conclusion

● Mappings add overhead at every step

● Algorithm designs should pay attention to
architecture- this will be very important as
machines get larger since the number of
independent processing units that need to
communicate is rapidly growing

● Good algorithms for one architecture are not
necessarily good algorithms for another

– Example: solving linear systems- good shared-
memory single processor algorithms can make
very poor distributed memory multiple processor
algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

