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Abstract We discuss the basic concepts of computer vi-
sion with stochastic partial differential equations (SPDEs).
In typical approaches based on partial differential equa-
tions (PDEs), the end result in the best case is usually one
value per pixel, the “expected” value. Error estimates or
even full probability density functions PDFs are usually not
available. This paper provides a framework allowing one
to derive such PDFs, rendering computer vision approaches
into measurements fulfilling scientific standards due to full
error propagation. We identify the image data with ran-
dom fields in order to model images and image sequences
which carry uncertainty in their gray values, e.g. due to
noise in the acquisition process. The noisy behaviors of
gray values is modeled as stochastic processes which are
approximated with the method of generalized polynomial
chaos (Wiener-Askey-Chaos). The Wiener-Askey polyno-
mial chaos is combined with a standard spatial approxi-

T. Preusser (�)
Center of Complex Systems and Visualization, Bremen
University, Bremen, Germany
e-mail: tp@mevis.de

H. Scharr · K. Krajsek
Institute for Chemistry and Dynamics of the Geosphere,
Institute 3: Phytosphere, Forschungszentrum Juelich GmbH,
Juelich, Germany

H. Scharr
e-mail: h.scharr@fz-juelich.de

K. Krajsek
e-mail: k.krajsek@fz-juelich.de

R.M. Kirby
School of Computing and Scientific Computing and Imaging
Institute, University of Utah, Salt Lake City, UT, USA
e-mail: kirby@cs.utah.edu

mation based upon piecewise multi-linear finite elements.
We present the basic building blocks needed for computer
vision and image processing in this stochastic setting, i.e.
we discuss the computation of stochastic moments, projec-
tions, gradient magnitudes, edge indicators, structure ten-
sors, etc. Finally we show applications of our framework
to derive stochastic analogs of well known PDEs for de-
noising and optical flow extraction. These models are dis-
cretized with the stochastic Galerkin method. Our selection
of SPDE models allows us to draw connections to the clas-
sical deterministic models as well as to stochastic image
processing not based on PDEs. Several examples guide the
reader through the presentation and show the usefulness of
the framework.

Keywords Image processing · Error propagation · Random
fields · Polynomial chaos · Stochastic partial differential
equations · Stochastic Galerkin method · Stochastic finite
element method

1 Introduction

In computer vision applications, e.g. medical or scientific
image data analysis, as well as in industrial scenarios, im-
ages are used as input measurement data. Of course it is
good scientific practice that proper measurements must be
equipped with error estimates (Gauss 1987; de Laplace
1812). Thus, for many applications not only the measured
values, but also their errors should be—and more and more
are—taken into account for further processing. This error
propagation must be done for every processing step, such
that the final result comes with a reliable precision estimate.
Unfortunately, for realistic models the computation of er-
ror propagation is sometimes difficult or cumbersome, and
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therefore most contributions dealing with error estimates are
restricted in one or more of the following:

• Data is presumed to be Gaussian distributed —the error is
then represented by a variance (cf. e.g. Nestares and Fleet
2003; Weber and Malik 1994);

• Bounds on the error are derived only (cf. e.g. Nestares et
al. 2000; Nestares and Fleet 2003);

• No true error estimates, confidence measures only are de-
rived (cf. e.g. Bruhn et al. 2005; Haussecker et al. 1998).

This paper presents a framework for the treatment of
computer vision models on images and image sequences
whose gray values are not assumed to be single values only
but distributions of values. The methodology is not restricted
to Gaussian distributions, and the output is not restricted to
error bounds. In fact the distributions can be much richer
than those that are completely described by the two values
mean and variance.

The key concept is an identification of image data with
random fields. Thereby we identify the gray values of im-
ages with random processes which are supposed to model
the behavior of image detector elements and the influence
of noise. We approximate those stochastic processes with
the method of generalized polynomial chaos (gPC) and
supplement this approximation with a spatial discretiza-
tion by Finite Element shape functions. This leads us to
an ansatz-space for stochastic images and image-sequences.
Computer vision models and algorithms using this con-
cept of stochastic images as random fields transform the
input distributions into output distributions without loos-
ing information on the precision due to approximated error
bounds.

We look at computer vision models which originate from
the minimization of energies through the solution of Euler-
Lagrange equations, or which come from other partial differ-
ential equations (PDEs). It is straight forward to augment the
deterministic PDEs with the stochastic setting by replacing
classical image functions by the stochastic analog. Special
care, however, must be taken for nonlinear operators which
lead to a coupling of the stochastic modes and moments. For
standard tools in computer vision we discuss the stochastic
generalization. With the help of projections and mass lump-
ing in the stochastic space we are able to write down simple
equations for the computation of means, variances, and co-
variances, as well as gradient magnitudes, edge indicators,
and structure tensors. Those operations include the calcula-
tion of stochastic integrals which can be computed in ad-
vance and stored in lookup tables.

We demonstrate the usage of the formalism by exem-
plary implementations of very well known and thus well
understood algorithms: Gaussian smoothing via isotropic
diffusion, Perona-Malik isotropic nonlinear diffusion (Per-
ona and Malik 1990), variational optical flow estimation

by Horn-Schunck (1981), a version with a robust smooth-
ing term (Black and Anandan 1991; Cohen 1993; Weickert
1998) and optical flow computation with a regularized data
term (Bruhn et al. 2005). These algorithms are prototypes
of linear and nonlinear, energy-based computer vision ap-
proaches for regularization, noise suppression, and parame-
ter estimation with a wealth of practical applications. They
are applied to very simple, thus easy to interpret, test data in
order to show the benefits and limitations of the formalism
put forward here. We do not advocate that these algorithms
are the ‘best’ for certain applications (cf. e.g. Haussecker
and Spies 1999; Papenberg et al. 2006; Amiaz and Kiryati
2006 for state of the art optical flow approaches): The ad-
vantages and disadvantages of the exemplary algorithms are
well known. Here they are only used for didactical reasons
and as demonstrators of the formalism. This enables the
reader to draw conclusions and connections to deterministic
image processing as well as stochastic image processing not
based on PDEs.

Although we present our stochastic framework in com-
bination with a classic finite element approach it is possible
to combine the stochastic Galerkin method with finite dif-
ference schemes as well. In the present work we have cho-
sen the former approach since there exists a wide variety of
functional analytic tools for finite element methods.

Benefit of the novel approach Results of the above men-
tioned algorithms for the mean (or more precisely expected
value) calculated with the new formalism do not signifi-
cantly differ from results a standard finite element algorithm
would give. In fact, the new formalism often boils down
to a standard deterministic implementation when we model
the input distribution only by its mean. The benefit of our
new approach lies in the handling of distributions: It al-
lows for precise, local and data depending error estimations
beyond the Gaussian assumption. Under some assumptions
concerning the smoothness of the output process, the calcu-
lated output distributions converge to the same distributions
one would get when running infinitely many Monte-Carlo
(MC) simulations of the applied algorithm and projecting
the resulting probability density function into our stochastic
ansatz space. Thus, our approach outperforms MC in terms
of accuracy and computational efficiency, as the full knowl-
edge about the input distribution is used to calculate the out-
put distribution, not only (few) samples from the input dis-
tribution.

Related work The use of PDEs in computer vision has
been popular during the last decades. Mostly, those PDEs
are the necessary conditions (Euler-Lagrange equations) for
minima of certain energy functionals. Approaches to de-
noising, restoration, in-painting, segmentation, registration,
optical flow estimation, etc. , and combinations of the latter
are too numerous to give a short overview here.
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To the best of the authors’ knowledge, SPDEs have not
yet been applied in computer vision to transform input dis-
tributions into output distributions, but they are well es-
tablished tools in other disciplines. Based on the Wiener-
Hermite polynomial chaos expansion (Wiener 1938), the
stochastic Galerkin method has been applied to a range of
problems in computational mechanics (Meecham and Jeng
1968; Chorin 1971; Chorin 1974; Maltz and Hitzl 1979;
Deb et al. 2001; Le Maître et al. 2002; Xiu and Kar-
niadakis 2002; Xiu and Karniadakis 2003; Lucor et al.
2004). This technique has also recently been introduced into
other disciplines such as thermodynamics (Ghanem 1999;
Narayanan and Zabaras 2004; Xiu and Karniadakis 2003)
and physical chemistry (Reagan et al. 2004; Reagan et al.
2005), in part because it leads to efficient solutions to sto-
chastic problems of interest, i.e. not only parameter sensi-
tivity and uncertainty quantification.

Our contribution shall not be confused with statistical
parameter selection methods, e.g. via Stochastic Differen-
tial Equations (SDEs) (Bao and Krim 2004) or Markov-
Random-Field assumptions (Scharr et al. 2003). However
our framework yields general extensions to the stochas-
tic interpretation of energy functionals presented in Scharr
(2006).

Paper organization In Sect. 2 we review some notion from
the theory of probability and introduce the reader to the the-
ory of random fields. We derive a way of identifying im-
ages and image-sequences with random fields. Thereby we
combine the approximation of stochastic processes by the
Wiener-Askey Polynomial Chaos with the standard multi-
linear interpolation/approximation schemes in space. In the
following Sect. 3 we discuss basic building blocks for com-
puter vision with images as random fields. There we also
analyze the structure of the resulting block operators and
their assembly which involves the computation of integrals
in the random space. In Sect. 4 the stochastic generaliza-
tion of some well known PDEs used in computer vision is
presented and discretized with help of the building blocks.
We consider a linear and a nonlinear diffusion (Perona and
Malik 1990) model, the optical flow extraction with the
Horn and Schunck approach (Horn and Schunck 1981),
a robust smoothing term for the optical flow field (Black and
Anandan 1993; Cohen 1993; Weickert 1998), and finally a
combined local global (CLG) approach (Bruhn et al. 2005).
An investigation of the bias of the CLG model further un-
derlines the usefulness of our framework. Conclusions are
drawn and an outlook is given in Sect. 6. In the Appendix
we summarize all building blocks and stochastic PDE mod-
els in order to support the understanding of the material, the
reimplementation of the models, and the reproduction of our
results.

2 Stochastic Images as Random Fields

In the following sections (see Sects. 2.1–2.3) we give the
exact mathematical definition of our ansatz space.

The core idea we put forward is that, in the presence of
noise, gray values in each pixel are samples from per pixel
distributions. We model these per-pixel distributions or, to
be more precise, their Probability Density Functions (PDF)
in contrast to standard image processing approaches where
only the expected value or single samples from the distrib-
utions are modeled. Roughly speaking, each pixel stores a
representation of the random field at that point (with corre-
sponding PDF) instead of a single value, i.e. in the follow-
ing we consider images and image sequences with uncer-
tain gray values as realizations of random fields. Thereby
we model the uncertainty of the gray values with random
processes. The stochastic finite element space we introduce
in the sections below is continuous in space as is typical in
FEM approaches. It is not only continuous in the spatial do-
main, where it consists of a standard bi-linear interpolation
scheme, represented by compact interpolation functions Pi ,
where i indicates pixel position (cf. Fig. 2), but also the sto-
chastic domain. In the stochastic domain per-pixel random
variables ξi with uniform distribution are applied. The uni-
form distributions of ξi are transformed into proper, contin-
uous PDFs using process functions. These process functions
are approximated as weighted sums of polynomial, orthogo-
nal basis functions Hα , where α indicates the degree of the
polynomial. The weights f i

α describing a function in the sto-
chastic finite element space are denoted modes, e.g. the first
mode of a gray value image u is an image containing the ex-
pected gray values, the second mode is an image containing
weights belonging to H 2—using a special selection of H 2,
it is proportional to the standard deviation, but we also use
other selections—etc.

2.1 Random Fields and Wiener-Askey Polynomial Chaos

First we review some background from the theory of prob-
ability, define some notions, and review the Wiener-Askey
generalized polynomial chaos (gPC). A good overview of
the methodology we use in the following is given in Keese
(2004).

Let (�, A,μ) be a complete probability space, where
� is the event space, A ⊂ 2� the σ -algebra, and μ the
probability measure. Following (Xiu and Karniadakis 2002),
we can represent any general second-order random process
X(ω),ω ∈ � in terms of a collection of random variables
ξ = (ξ1, . . . , ξN ) with independent components. Let ρi :
�i → R

+ be the PDFs of the random variables ξi(ω),ω ∈
�, and its image �i ≡ ξi(�) ∈ R be intervals in R for
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i = 1, . . . ,N . Then

ρ(ξ) =
N∏

i=1

ρi(ξi), ∀ξ ∈ �

is the joint probability density of the random vector ξ with
the support

� =
N∏

i=1

�i ⊂ R
N.

As commented in Xiu and Karniadakis (2002), this al-
lows us to conduct numerical formulations in the finite di-
mensional (N -dimensional) random space �. Let us denote
L2(�) as the probabilistic Hilbert space (Malliavin 1997) in
which the random processes based upon the random vari-
ables ξ reside. The inner product (scalar-product) of this
Hilbert space is given by:

〈a, b〉 =
∫

�

(a · b) dμ =
∫

�

(a · b)ρ(ξ)dξ

where we have exploited independence of the random vari-
ables allowing to write the measure as product of measures
in each stochastic direction. For notational simplicity we
will often omit the integral in terms of integration against
the probability measure as a shorthand for the decomposi-
tion implied above. We similarly define the expectation of a
random process X ∈ L2(�) as:

E[X(ξ)] =
∫

�

X(ξ) dμ =
∫

�

X(ξ)ρ(ξ )dξ .

Considering a spatial domain D ⊂ R
d we define a set of

random processes which are indexed by the spatial position
x ∈ D:

f : D × � → R.

Such a set of processes is referred to as a random field
(Keese 2004) which can also be interpreted as a function-
valued random variable, because for every event ω ∈ �

the realization f (·, ξ(ω)) : D → R is a function on D.
For a vector-space Y the class Y ⊗ L2(�) denotes the
space of random fields whose realizations lie in Y for a.e.
ξ ∈ �. Throughout this paper we will use random fields
f ∈ L2(D) ⊗ L2(�) such that f (·, ξ) ∈ L2(D) for almost
all ξ ∈ �. In this case let us define the norm |||·||| as

|||f (x, ξ)|||2 = E[‖f (x, ξ )‖2
L2(D)

]

=
∫

�

∫

D

(
f (x, ξ )

)2
dx ρ(ξ)dξ ,

that is, |||·||| denotes the expected value of the L2-norm of the
function f .

A key to the numerical treatment of a stochastic process
f i ∈ L2(�i) is the expansion

f i(ξi) =
p∑

α=1

f i
αHα(ξi) (1)

with stochastic ansatz functions Hα(ξ). Those can be cho-
sen according to the Wiener-Askey Polynomial Chaos Ap-
proach (Xiu and Karniadakis 2002) (generalized Polynomial
Chaos, gPC) in which the functions Hα(ξ) are orthogonal
polynomials ranging up to pth order (that is, a polynomial
of degree p − 1) and p must be chosen to be large enough
so that the solutions will meet the accuracy requirements
for the particular system of interest. In what is to follow we
will denote the coefficients f i

α as modes of the stochastic
process f i(·). Furthermore we denote the space spanned by
the polynomials with

Pp = span{Hα | α = 1, . . . , p}.

Convergence rates of the system depend on the choice of
orthogonal polynomials for underlying probability density
functions of a random model parameter. Each probability
distribution has a corresponding optimal set of orthogonal
polynomials (Xiu and Karniadakis 2002); e.g., for Gaussian
random functions, Hermite polynomials provide the best
convergence, whereas Legendre polynomials are best uti-
lized for functions of uniform distributions, etc.

Expansions like (1) exhibit fast convergence rates when
the stochastic response of the system is sufficiently smooth
in the random space, e.g., bifurcation behavior is absent. Un-
like the Monte Carlo method, which is amazingly robust be-
cause it uses effectively no information about the underlying
process to determine the sampling or reconstruction proce-
dure, the gPC methodology attempts to use as much of the
inherent structure (such as smoothness within the stochastic
space) as possible to make the methodology computation-
ally tractable.

The corresponding PDF of a random process is obtained
through the branches of the derivative of the inversion of its
process-function. In many cases the derivative of the inverse
can be obtained with the inverse function theorem, but if the
inversion is analytically not feasible a binning and histogram
of the function values of the process is beneficial.

In the experiments shown throughout the paper we have
selected Legendre polynomials to span the polynomial
space Pp . They are simple to use for modeling processes and
distributions having finite support, like uniform and trun-
cated Gaussian distributions. In Fig. 1 we show how distri-
butions ranging from uniform to Gaussian shaped processes
can be approximated with Legendre polynomials.
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Fig. 1 Top row: For a random
process (left) that has been
modeled with a linear
combination of 2 Legendre
polynomials we show the
resulting probability density
function (right). Bottom row:
For a random process that has
been modeled with a linear
combination of 4 Legendre
polynomials we show the
resulting PDF

2.2 Stochastic Still Images

Let us assume we are examining still images. An ac-
quisition process of such digital images yields noisy im-
ages due to various technical and physical reasons (cf.
Forsyth and Ponce 2003, Chap. 1). In this section our in-
tention is to model the stochastic process of gray-value
measurement (i.e. the uncertain output of the detector el-
ements of the camera) with the help of the methodol-
ogy presented in the last section. For the sake of sim-
plicity we restrict our presentation to two-dimensional im-
ages. An extension to n-dimensional images is not diffi-
cult.

We assume the pixels of the image are located at a regular
quadrilateral grid of dimension {1, . . . ,N1} × {1, . . . ,N2}.
So the image has N := N1N2 pixels and its degrees of
freedom (DOF) lie on the vertices of a regular grid G
with (N1 − 1)(N2 − 1) quadrilateral elements Ej . We de-
note the set of vertices of G with I and order the pix-
els xi ∈ I lexicographically, i.e. from left to right, from
top to bottom. Classically, we introduce a finite element
space by using a bi-linear interpolation scheme (Preusser
and Rumpf 1999). This means, we consider the finite-

dimensional space

V h
2 := span{Pi |Pi ∈ C0(D),Pi(xj ) = δij ,

Pi |E is bilinear ∀E ∈ G} ⊂ H 1(D)

on the domain D = [1,N1] × [1,N2] ⊂ R
2. Above, δ

is the Kronecker-δ. So the space V h
2 is spanned by the

classical piecewise linear tent-functions Pi , which are
equal to one at xi and vanish at every other vertex (see
Fig. 2 for their support). The space H 1(D) denotes the
Sobolev space H 1,2(D) of functions having square inte-
grable weak derivatives. Every image f ∈ V h

2 has a rep-
resentation

f (x) =
∑

i∈I
f iPi(x) (2)

where the vector of degrees of freedom is (f 1, . . . , f N) ∈
R

N .
Let us now assume that gray values of the pixels reveal

some uncertainty and thus have a random distribution. In
more detail, we assume that the behavior of a pixel at loca-
tion xi is determined by a separate stochastic process which
depends on a random variable ξi . Furthermore we assume
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Fig. 2 We model the random behavior of the detector elements by ran-
dom variables ξi each having a spatial extent which is given by finite
element shape functions Pi . Left: For 2D images or still 3D images the
behavior of each pixel is modeled by a separate (independent) random

variable. Right: For image sequences the behavior of pixels which have
the same spatial coordinate (but may be located in different frames) is
modeled by the same random variable

that these random variables are independent and that they
are all supported on the same domain �i = �∗ ⊂ R. The
independence is based on the physical assumption of inde-
pendence of the noise of each detector element or camera
pixel. Thus, for a still image with N pixels, the stochastic
space � = �N∗ is N -dimensional and ξ = (ξ1, . . . , ξN ) is a
vector of random variables.

As described in the previous section, the stochastic
Galerkin method represents any stochastic process, X(ξ),
by a weighted sum of orthogonal polynomials (Ghanem and
Spanos 1991; Xiu and Karniadakis 2002; Xiu and Karni-
adakis 2002; Xiu and Karniadakis 2003). These polynomials
are functions of a vector of independent random variables,
ξ(ω),ω ∈ �, of known distribution. In the case of this study,
the random processes of interest are the (stochastic) gray
values attributed to each pixel. The random variables will be
chosen to represent the distributions from which gray values
are sampled.

Consequently, our ansatz space is the tensor product
space V h ⊗ Pp ⊂ H 1(D) ⊗ L2(�), i.e. we are considering
random fields whose realizations are functions in V h. Since
the random variables for the pixels are independent, an im-
age f ∈ V h

2 ⊗ L2(�) decomposes into

f (x, ξ) =
∑

i∈I
f i(ξi)Pi(x). (3)

This means that the behavior of a pixel with spatial-extent
(support) Pi is modeled by the stochastic process f i(ξi) (cf.
Fig. 2).

Combining (1) and (3), we construct a finite-dimensional
space Hh,p

still := V h
2 ⊗ Pp containing discrete random fields

f (x, ξ) =
∑

i∈I

p∑

α=1

f i
α Hα(ξi)Pi(x). (4)

With notational abuse we can also write f (x, ξ ) =∑p

α=1 fα(x)Hα(ξ) where fα(x) = ∑
i∈I f i

αPi(x). So the
fα are the images that show the stochastic mode α of the

pixel’s processes. Altogether, the stochastic image has pN

DOF and we use the ordering

F := (F1; . . . ;Fp)

:= (f 1
1 , . . . , f N

1 ; . . . ;f 1
p , . . . , f N

p ) ∈ R
pN . (5)

Remark 1 Indeed we have constructed a proper finite di-
mensional sub-space of H 1(D) ⊗ L2(�). Consequently the
stochastic images (interpreted as discrete random fields)
have weak spatial derivatives as typical for FEM methods.
Moreover, setting p = 1 we reduce to the classical finite el-
ement discretization and Hh,p

still ≡ V h
2 .

2.3 Stochastic Image Sequences

Let us now consider an image sequence consisting of
Nt frames. Each frame has dimension M := N1N2, thus
its pixels lie on a regular quadrilateral grid of dimen-
sion {1, . . . ,N1} × {1, . . . ,N2}. The complete image se-
quence has N := N1N2Nt pixels and its degrees of free-
dom (DOF) lie on the vertices of a regular grid G with
(N1 − 1)(N2 − 1)(Nt − 1) hexahedral elements Ej . For the
later use it is convenient to introduce a special indexing of
the vertices of this grid G , which has a spatial and a tem-
poral component. Within each frame we order the vertices
lexicographically as we did for still images in the previous
section. For the spatio-temporal ordering we use a multi-
index i = (ix, it ) such that a pixel yi = y(ix ,it ) in the image
sequence is then referred to with its index ix ∈ {1, . . . ,M}
within the frame it ∈ {1, . . . ,Nt }. In the following we de-
note the multi-index set with J = {1, . . . ,M}× {1, . . . ,Nt },
moreover we use the abbreviation y = (t, x).

Classically, we identify the image sequence with a three-
dimensional image and a trilinear interpolation scheme
(Mikula et al. 2004). This means that we use a bilin-
ear interpolation within the frames and an additional lin-
ear interpolation between the frames, i.e. we define the
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space

V h
3 := span{Pi |Pi ∈ C0(D × I ),Pi(yj ) = δij ,

Pi |E is trilinear ∀E ∈ G} ⊂ H 1(D × I )

on the spatio-temporal domain D × I = [1,N1] × [1,N2] ×
[1,Nt ] ⊂ R

3. In the following we will also use the no-
tation R := D × I . In the definition, δij = δixjx δit jt is
the Kronecker-δ applied to the multi-indices i and j . Of
course, every image sequence has a representation analog
to (2).

To derive a model for stochastic image sequences we
must take into account that each frame is recorded by the
same set of detector/camera elements. Thus, a sequence with
Nt frames and N = N1N2Nt degrees of freedom is modeled
by N1N2 random variables ξi only (cf. Fig. 2). This means
that the random variables ξi are time independent. However,
it does not mean that PDFs described with them are time in-
dependent. Temporal changes of the PDFs are modeled by
temporal changes of the stochastic modes f i

α . In fact, the
acquisition of gray values for pixels yi and yj of the image
sequence is modeled by the same time-dependent stochastic
process if ix = jx . Consequently we have to modify the ex-
pansion (4) such that it involves Hα(ξix ) instead of Hα(ξi).

Our ansatz space Hh,p
seq := V h

3 ⊗ Pp ⊂ L2(D × I ) ⊗ L2(�)

has dimension pN and the discrete random fields have the
expansion

f (y, ξ) =
∑

i∈I

p∑

α=1

f i
αHα(ξix )Pi(y) =

p∑

α=1

fαHα(ξ). (6)

Again by abusing the notation we can define image se-
quences fα(y) := f i

αPi(y) showing the stochastic modes
and thus f (y, ξ) = ∑p

α=1 fα(y)Hα(ξ). Let us finally note
that we have again constructed a proper finite dimensional
sub-space Hh,p

seq ⊂ H 1(D × I ) ⊗ L2(�).

Remark 2 The discretization defined in (6) indeed yields
time-dependent processes as can be seen as follows: Assume
we have discretized each frame of the sequence by standard
2D tent-functions Q2

j (x) such that a frame with stochas-

tic data has the representation
∑M

j=1 fj (ξj )Q
2
j (x). The sto-

chastic processes fj (ξj ) model the random behavior of the
pixel j with spatial extent spanQ2

j . Considering an image
sequence the stochastic process must be time-dependent,
i.e. the image has the expansion

f (t, x, ξ) =
M∑

j=1

fj (t, ξj )Q
2
j (x).

Now we discretize the stochastic processes by gPC and
piecewise linear expressions in time, i.e.

fj (t, ξj ) =
p∑

α=1

Nt∑

k=1

(fj )
k
αHα(ξj )Q

1
k(t),

where Q1
j are 1D tent-functions. Putting these discretiza-

tions together we obtain

f (y, ξ) = f (t, x, ξ )

=
M∑

j=1

p∑

α=1

Nt∑

k=1

(fj )
k
αHα(ξj )Q

1
k(t)Q

2
j (x),

which is the same as (6) if we set Pi(y) = Q2
j (x)Q1k(t)

and f i
α = (fj )

k
α for the multi-index i = (j, k). Here we use

the fact that the standard nD tent-functions are tensor prod-
ucts of the 1D tent functions. We have chosen to present
the discretization as above since it is more consistent with
the standard discretization of, e.g. the optical flow equations
with finite elements, although the notation is slightly more
complicated.

3 Building Blocks for Computer Vision with Stochastic
Finite Elements

In the section above we introduced finite dimensional ansatz
spaces that model stochastic still images (Hh,p

still ) as well as

stochastic image sequences (Hh,p
seq ). We now present some

tools that are needed for image processing tasks with those
ansatz spaces. Later we will use these building blocks to dis-
cretize the stochastic analog of some well known models for
image denoising and optical flow computation. The presen-
tation in this section is based on the ansatz space Hh,p

still for
stochastic still images. We emphasize that a modification for
the ansatz space for stochastic image sequences Hh,p

seq is very
simple.

Throughout this section we are going to use the following
properties of the polynomial basis Hα , which in fact are sat-
isfied by possible choices (Hermite, Legendre, etc.) of basis
functions for the gPC approach:

• The first basis function is constant,

H 1 ≡ 1 and such that E[H 1] = 1,

• The basis is orthogonal with respect to the measure,

i.e. for α �= β we have 〈Hα,Hβ〉 = 0.

(7)

As a simple consequence of those properties we directly get
for α > 1 that the basis functions Hα have zero mean, i.e.
E[Hα] = 〈Hα,H 1〉 = 0.
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3.1 Mean, Variance, and Covariance

An analysis of the stochastic images involves the stochas-
tic moments of the images’ distributions. From the full dis-
cretization (4) we can compute the mean of the random field
f as

E[f ](x) =
∫

�

f (x, ξ) ρ(ξ)dξ

=
∑

i∈I

p∑

α=1

f i
αPi(x)

∫

�

Hα(ξi) ρ(ξ)dξ

=
∑

i∈I
f i

1Pi(x) (8)

because only the stochastic integral over H 1(ξi) (the mean
mode) does not vanish.

From here we can proceed using the identity Var [f ] =
E[f 2] − (E[f ])2 to obtain

Var [f ](x) = E[f 2](x) − (E[f ])2(x)

=
∫

�

∑

i,j∈I

p∑

α,β=1

f i
αf

j
β Hα(ξi)H

β(ξj )

× Pi(x)Pj (x)ρ(ξ )dξ

−
∑

i,j∈I
f i

1f
j

1 Pi(x)Pj (x).

Because of the orthogonality of the polynomials Hα the
stochastic integral 〈Hα(ξi),H

β(ξj )〉 vanishes if i = j and
α �= β . For the same reason only the term for α = β = 1 re-
mains if i �= j . Because the first mode is constant equal to
one we have 〈H 1,H 1〉 = E[H 1] = 1 and thus

Var [f ](x) =
∑

i∈I

p∑

α=1

(f i
α)2〈Hα,Hα〉P 2

i (x)

+
∑

i,j∈I
i �=j

f i
1f

j

1 Pi(x)Pj (x)

−
∑

i,j∈I
f i

1f
j

1 Pi(x)Pj (x)

=
∑

i∈I

p∑

α=1

(f i
α)2〈Hα,Hα〉P 2

i (x)

−
∑

i∈I
(f i

1 )2P 2
i (x)

=
∑

i∈I

p∑

α=2

(f i
α)2〈Hα,Hα〉P 2

i (x).

This expression is not an element of the physical finite ele-
ment space V h

2 any longer as we have the square of our linear

finite element basis functions (recall that our finite element
space consists of only affine functions). But we can use a
standard interpolation (or nodal evaluation) to represent the
term in V h

2 . This leads us to

Var[f ](x) =
∑

i∈I

p∑

α=2

(f i
α)2〈Hα,Hα〉Pi(x). (9)

We see that the square at Pi(x) vanished due to this approx-
imation.

Along the same line formulas for higher stochastic mo-
ments like skewness, curtosis, etc. can be derived.

Let us now assume that we have two random images f

and g whose covariance we would like to compute. Using
the identity Cov [f,g](x) = E[(f − E[f ])(g − E[g])] we
get

Cov [f,g](x) =
∫

�

∑

i,j∈I

p∑

α,β=2

f i
αg

j
βHα(ξi)H

β(ξj )

× Pi(x)Pj (x)ρ(ξ )dξ .

As above, the only non-zero terms in these sums are for
i = j and α = β . Together with the nodal evaluation of the
resulting spatial terms this yields

Cov [f,g](x) =
∑

i∈I

p∑

α=2

f i
αgi

α〈Hα,Hα〉Pi(x). (10)

Here again a term Pi(x) vanished due to nodal evaluation.
As expected we get Cov [f,f ] = Var [f ] from our expres-
sions.

3.2 Projections

Quite often in computer vision (nonlinear) functions of the
gray values or their derivatives must be evaluated. In the fol-
lowing we present a recipe for the treatment of such an eval-
uation with stochastic images. So let us consider a function
g : Hh,p

still → L2(R)⊗L2(�) of a discrete stochastic image f

having an expansion as in (4). Examples for g are gradient
magnitudes and edge-indicator functions like

g(u) = ∇u · ∇u, and g(u) = (1 + |∇u|2/λ2)−1. (11)

Both functions are well known and often needed in image
processing, e.g. for the Perona-Malik diffusion (Perona and
Malik 1990).

In general the result of the application of g on u does
not lie in Hh,p

still any longer. For classical image processing
with finite elements, this problem arises as well. There, e.g.
approximations of the gradient with finite differences or in-
exact quadrature rules are used as a remedy. It seems ap-
pealing to use such approximations in the stochastic case as
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well. However, we emphasize that for nonlinear quantities
special care must be taken, since a coupling of the stochas-
tic modes (cf. Fig. 4) takes place, which may be difficult to
capture with such approximations.

To obtain an expansion of g(u) of the form (4), we com-
pute a L2-projection gh,p(x, ξ) of g(u) onto Hh,p

still . The pro-
jection is defined by the orthogonality relation

E

[∫

D

gh,p(x, ξ)Hβ(ξj )Pj (x) dx

]

= E

[∫

D

g(u)(x, ξ )Hβ(ξj )Pj (x) dx

]
.

for β = 1, . . . , p and for all j ∈ I . Substituting the expan-
sion (4) of gh,p into this orthogonality yields

∑

i∈I

p∑

α=1

〈
Hα(ξi),H

β(ξj )
〉 ∫

D

gi
αPi(x)Pj (x) dx

= E

[∫

D

g(u)(x, ξ )Hβ(ξj )Pj (x) dx

]
(12)

for β = 1, . . . , p and for all j ∈ I . This is a linear system
of equations for the coefficients (gi

α)i,α of the projection
gh,p . Denoting the vector of coefficients with G = (gi

α)i,α
the system can be written as

MG = R with
(13)

R =
(

E

[∫

D

g(u)(x, ξ )Hβ(ξj )Pj (x) dx

])

j,β

where M = ((Mα,β)ij ) is the stochastic block-mass matrix

(Mα,β)ij = 〈
Hα(ξi),H

β(ξj )
〉 ∫

D

Pi(x)Pj (x) dx (14)

whose blocks correspond to the modes of u. In Sect. 3.6 we
discuss the mass matrix and its assembly in more detail.

The desired expansion of g is given by the solution of this
system which involves the inversion of the stochastic mass
matrix: G = M−1R. This inversion of M may be computa-
tionally intensive. However, using mass lumping (Thomee
1984) can simplify the effort enormously, since it diagonal-
izes the stochastic mass matrix. Lumping of masses yields a
block diagonal mass matrix M̃ such that

(M̃α,β)ij = δi,j δα,β

∑

k∈I

p∑

γ=1

(Mα,γ )ik

= δi,j δα,β

∑

k∈I

p∑

γ=1

〈
Hα(ξi),H

γ (ξk)
〉

×
∫

D

Pi(x)Pk(x) dx.

In Sect. 3.6.1 we describe how to compute this mass matrix.
For the assembly of the right hand side R we have differ-
ent options. Usually one would use a stochastic quadrature
rule to evaluate the expectation in (13). However, if a direct
expansion of g as a product of expansions like (4) is avail-
able, we can proceed differently as we shall see in the next
paragraph.

3.3 Gradient Magnitude

Let us use the projection discussed above to derive an ex-
pression for the gradient magnitude of a stochastic image.
We consider g(u) = |∇u|2 = ∇u · ∇u and insert this into
the system of (13). Directly using mass lumping leads us to

gi
α = (M̃α,α)−1

ii E

[∫

D

(∇u · ∇u)(x, ξ )Hα(ξi)Pi(x) dx

]
.

Using the basis representation (4) of ∇u we can write ∇u ·
∇u as

(∇u · ∇u)(x, ξ )

=
∑

j,k∈I

p∑

β,γ=1

u
j
βuk

γ Hβ(ξj )H
γ (ξk)∇Pj (x) · ∇Pk(x).

If we order the DOF of u in the vector U as in (5) we can
derive from this the block-system

gi
α = M̃−1

(i,α),(i,α)U · K(i,α) U, (15)

where the block-matrix K(i,α) is defined by

(
(K(i,α))

β,γ
)
j,k

= 〈
Hα(ξi)Hβ(ξj ),H

γ (ξk)
〉

×
∫

D

Pi(x)∇Pj (x) · ∇Pk(x) dx.

Again, the blocks of this matrix correspond to the modes
of u. Here, K(i,α) is not a block-diagonal matrix, thus there
is a coupling between the modes of U . This is the reason
why standard approximations on the modes (like finite dif-
ferences for each mode) do not yield the correct result. In
Sect. 3.6.1 we discuss the assembly and the structure of this
matrix in more detail.

In Figs. 3 and 4 we show the computation of the gradient
magnitude on a test image. For the computations we have
used p = 3 and Legendre polynomials as basis functions for
the stochastic processes on �∗ = [−1,1]. From the images
it is clearly visible how the modes are coupled through the
nonlinear-operators, i.e. the spatial variation of the variance
is visible in the mean of the gradient-magnitude. Conversely,
we also observe that the variance captures the gradients of
the mean input image. The spatial resolution of the test im-
age is 257 × 257, the gray values range in the interval [0,1],
and we have used a value of λ = 0.01 (see (11)).
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Fig. 3 We show the stochastic
modes for the test evaluation of
the gradient magnitude and the
edge-indicator (cf. Fig. 4) on a
test image. One realization of
the distribution modeled in this
example is shown in the top left
image. On the right the
stochastic modes used in the
expansion (4) are depicted.
According to (8) the mean
corresponds to the first mode of
the expansion. The variance
must be computed from the
remaining modes according
to (9). We have used a color
coding as shown in the color
ramp (bottom left) to make a
differentiation between positive
and negative values possible.
Note that we have scaled the
images to match the full color
range. Thus, the colors give a
qualitative impression only

Fig. 4 For a sample image (left)
we show the gradient magnitude
(middle) and an edge-indicator
(right). The expectations are
shown in the top row, whereas
the variances are shown in the
bottom row. Note that we show
the gradient images with a
contrast enhancement to better
visualize their global variance

3.4 Edge-Indicator Function

The computation of the gradient magnitude was simplified
by taking mass lumping into account. Furthermore it ben-
efited from the fact that we can directly write down the ex-
pansion of ∇u ·∇u as a product of sums. The setting is more
complicated if we consider a nonlinear edge indicator func-
tion, e.g.

g(v) = (1 + v/λ2)−1, (16)

where v is the representation of |∇u|2 whose coefficients
have been derived in (15). As above, we insert this function
into the right hand side R (cf. (13)) and get for G = M−1R

gi
α = (M̃α,α)−1

ii E

[∫

D

g(v)(x, ξ)Hα(ξi)Pi(x) dx

]

= (M̃α,α)−1
ii

∫

�

∫

D

g(v)(x, ξ)Hα(ξi)Pi(x) dx ρ(ξ)dξ .

To be more specific let us substitute the actual edge-
indicator function g(v) = (1 + v/λ2)−1 and the expansion
(4) for v. This leads us to the identity
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gi
α = (M̃α,α)−1

ii

∫

�

∫

D

Hα(ξi)Pi(x)

1 + λ−2
∑

j∈I
∑p

β=1 V
j
β Hβ(ξj )Pj (x)

dx ρ(ξ)dξ (17)

which is only computable with a quadrature rule in the
physical and the stochastic space. This will be discussed in
Sect. 3.6.1.

In Figs. 3 and 4 we show the evaluation of the edge-
indicator function, where we have used the quadrature rules
described in the next section. Again we have used Legendre
polynomials and p = 3. It is again clearly visible from the
images how the stochastic modes are coupled through the
nonlinear edge-indicator function.

3.5 Diffusion- and Structure-Tensors

The concepts presented in the last paragraph can easily be
generalized to tensor-valued functions. If we consider e.g.
the structure tensor J = (∇f )T ∇f of a stochastic image f

we need to compute the stochastic representation of deriv-
atives (∂mf )(∂nf ). Those quantities, however, can be ob-
tained with the projection technique from Sect. 3.3. We just
have to replace the expansion of ∇u ·∇u with the expansion
of the desired product of derivatives (∂mf )(∂nf ). In Fig. 5
we show the three components of the structure tensor of the
test image from Fig. 4.

3.6 Stochastic Integrals

In the last sections we have defined multiple quantities
which involve integration over the random space �. In this

section we describe how to evaluate these high-dimensional
integrals and how to use quadrature rules to compute coeffi-
cients as in (17). Although � is an M-dimensional space,
where M is the number of random variables that model
the stochastic behavior of the image or image sequence, the
computation of the integrals is not very complicated. Let us
first focus on the matrices and tensors that appeared in the
previous sections. Then we discuss the numerical stochas-
tic quadrature that is used to compute the coefficients of the
edge-indicator.

3.6.1 Stochastic Matrices

During the last sections we have encountered the inner prod-
uct on the random space multiple times, i.e. integrals over
pairs or triples of stochastic basis functions. Those inte-
grals are the coefficients that are multiplied with integrals
in the physical space e.g. like for coefficients of the stochas-
tic mass matrix (14). In general it is possible to separate the
stochastic and the spatial integration such that in most cases
the computation of integrals reduces to a component-wise
multiplication of an integral over the random space with an
integral over the physical space.

The expectations of products of tuples of stochastic ba-
sis functions play a central role in the concept presented in
this work. In the section on a stochastic Galerkin method
for diffusion and optical flow models, we will need those

Fig. 5 For the test image shown
in Fig. 4 we depict the stochastic
moments of the structure tensor.
Note that again we have
enhanced the contrast of the
gray values for the presentation
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expectations again. So let us focus on the integral
〈
Hα(ξi),H

β(ξj )
〉

= E
[
Hα(ξi)H

β(ξj )
] =

∫

�

Hα(ξi)H
β(ξj ) ρ(ξ)dξ

=
∫

�1

· · ·
∫

�M

Hα(ξi)H
β(ξj )ρ(ξ1) dξ1 · · ·ρ(ξM)dξM.

Already for images of moderate size M a computation of
this high dimensional integral seems not feasible. But for-
tunately, we have to integrate over a small number (here 2)
stochastic coordinates (random variables) only. Moreover,
the values of the integrals do not depend on the actual phys-
ical location of the corresponding pixel (here the values of i

and j ). Only we have to decide whether the locations coin-
cide, if the pixels are neighbors, or if their spatial extent does
not overlap. So without loss of generality, we can assume
that the spatial locations of the random variables lie within a
reference-element (as is standard in finite element methods
(Thomee 1984)) and thus attain the values {1, . . . ,4}.

Having this simplification in mind, we can easily com-
pute the expectation of products of pairs, triples and quadru-
ples of stochastic basis functions, which are the quanti-
ties that we need for the concept presented in this work.
For every choice of polynomial basis (Legendre, Hermite,
Laguerre, etc. ) we can store the values in a lookup ta-
ble.

For the later use we define the tensors

A
i,j,k,l
α,β,γ,δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�1

Hα(ξ1)Hβ(ξ1)Hγ (ξ1)Hδ(ξ1) ρ(ξ1)dξ1, i = j = k = l,

∫

�1

∫

�2

Hα(ξ1)Hβ(ξ1)Hγ (ξ1)Hδ(ξ2) ρ(ξ1)dξ1ρ(ξ2)dξ2, i = j = k �= l,

...
permutations of three
equal latin indices,

∫

�1

∫

�2

∫

�3

Hα(ξ1)Hβ(ξ2)Hγ (ξ3)Hδ(ξ3) ρ(ξ1)dξ1 · · ·ρ(ξ3)dξ3, i, j �= k = l, i �= j,

...
permutations of two
equal latin indices,

∫

�1

∫

�2

∫

�3

∫

�4

Hα(ξ1)Hβ(ξ2)Hγ (ξ3)Hδ(ξ4) ρ(ξ1)dξ1 · · ·ρ(ξ4)dξ4
all latin indices
are different,

B
i,j,k
α,β,γ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�1

Hα(ξ1)Hβ(ξ1)Hγ (ξ1) ρ(ξ1)dξ1, i = j = k,

∫

�1

∫

�2

Hα(ξ1)Hβ(ξ1)Hγ (ξ2) ρ(ξ1)dξ1ρ(ξ2)dξ2, i = j �= k,

... permutations of two
equal latin indices,

∫

�1

∫

�2

∫

�3

Hα(ξ1)Hβ(ξ2)Hγ (ξ3) ρ(ξ1)dξ1 · · ·ρ(ξ3)dξ3, i �= j, i �= k, j �= k,

C
i,j
α,β :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�1

Hα(ξ1)Hβ(ξ1) ρ(ξ1)dξ1, i = j,

∫

�1

∫

�2

Hα(ξ1)Hβ(ξ2) ρ(ξ1)dξ1ρ(ξ2)dξ2, i �= j,

(18)

which give us the desired lookup-tables for all possible
combinations of tuples of basis functions and their loca-
tions within the reference-element. We have used the fact
that |�i | = ∫

�i
ρ(ξ)dξ i = ∫

�i
ρi(ξi)dξi = 1 for any ran-

dom variable ξi . Using (7) we can easily derive some
properties of the tensors A, B , and C, e.g. we can check

whether an entry is zero due to reasons of orthogonal-
ity.
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Let us finally note that the storage of the integrals over
tuples of spatial basis functions or their derivatives in lookup
tables is a standard approach in the numerical treatment of
finite element methods (cf. e.g. Preusser and Rumpf 1999).
In our setting many of the matrix entries and integrals can
be computed by pairwise multiplication of an entry from the
stochastic lookup table with an entry from the spatial lookup
table.

3.6.2 Stochastic Quadrature

To concretize the quadrature announced in Sect. 3.4 (17),
for the computation of the edge-indicator function we use
an M-dimensional quadrature rule for the stochastic inte-
gral. This quadrature shall be the tensor product of a d-point
one-dimensional quadrature rule. Thereby we use the fact
(cf. Sect. 2.2) that all random processes are defined on the
same domain �i = �∗. Let us denote the weights of the
one-dimensional quadrature by {κ1, . . . , κd} ∈ R

d and the
quadrature points with {z1, . . . , zd} ∈ �d∗ . Thus, we have to
compute

gi
α ≈ (M̃α,α)−1

ii

d∑

l1,...,lM=1

κl1 · · ·κlM Hα((zl)i )

×
∫

D

g(v)(x,zl)Pi(x) dy,

where we set zl = (zl1 , . . . , zlM ) ∈ � such that (zl)i = zli .
Fortunately, the spatial basis function Pi has compact sup-
port and the random variables are coupled to the support of
spatial basis functions. Thus we must integrate over those
stochastic variables only, whose supporting spatial basis
function intersects the support of Pi . Splitting the integral
over D into a sum of integrals over the elements E of the
grid G yields

gi
α ≈ (M̃α,α)−1

ii

∑

E∈G

d∑

lj =1
j=1,...,M

xj ∈E

(∏

j

κlj

)
Hα((zl )i)

×
∫

E

g(v)(x,zl )Pi(x) dy.

So on each element E ∈ G the M-dimensional stochastic in-
tegral reduces to a four-dimensional stochastic integral be-
cause every element E has four vertices.

For the particular edge-indicator function from Sect. 3.4
this means

gi
α ≈ (M̃α,α)−1

ii

∑

E∈G

d∑

lj =1
j=1,...,M

xj ∈E

(∏

j

κlj

)
Hα(zli )

×
∫

E

Pi(x)

1 + λ−2
∑

lk=1
k=1,...,M

xk∈E

∑p

β=1 V k
β Hβ(zlk )Pk(x)

dy.

Although it appears complicated, this integral can easily be
computed with a traversal of the grid and local operations
on the elements E.

4 Stochastic Galerkin Method for Diffusion Filtering

In this section we show the usage of the stochastic finite ele-
ment discretization and the building blocks presented in the
preceding sections. To do so, we apply them to stochastic
versions of well known and simple partial differential equa-
tions frequently used in computer vision. We have chosen
a selection of very basic and simple diffusion equations for
which the computer vision community has gained a wide
understanding and insight.

Namely, first we present linear diffusion of an image u

via ∂tu = �u, with initial condition u(t = 0) = f and where
� denotes the spatial Laplacian. This describes the temporal
evolution of u, creating the so-called Gaussian Scale-Space
(Iijima 1962, 1963; Witkin 1983). And second we present
a nonlinear diffusion of u via ∂tu = div(g(|∇u|)∇u), also
called Perona-Malik diffusion (Perona and Malik 1990).

Our intention is to enable the reader to gain understand-
ing of computer vision with SPDEs and to see the connec-
tions to classical/deterministic approaches with PDEs on the
basis of those simple models. We are neither going to ad-
dress issues of existence and uniqueness of solutions of the
continuous SPDEs, nor are we going to discuss the spaces
in which solutions reside. Instead, we point the interested
reader to the ongoing research in the area of Galerkin FEM
for SPDEs (cf. e.g. Deb et al. 2001; Keese 2004; Ghanem
and Spanos 1991; Xiu and Karniadakis 2002).

Discretization of SPDEs is completely analogous to clas-
sical FEM discretizations of PDEs, when having the sto-
chastic ansatz spaces from Sect. 2 at hand:

1. temporal derivatives are exchanged by an Euler scheme,
2. the resulting equations are converted into their respective

weak formulation1 by projection onto test functions z and
integrating by parts, and

3. solution images u are represented by their expansions.

This yields a system of equations which can be written in
block form. The system is then solved for the coefficients
of the expansion of u. We will now examine each of the
aforementioned diffusion problems in detail.

1The weak formulation of a PDE means that it does not have to hold
point-wise everywhere (strong form), but only when integrated against
a test function. This relaxes the problem: instead of deriving an exact
solution everywhere, we derive a solution satisfying the strong form on
average over the test-function domain.
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4.1 Linear Diffusion Filtering

We begin with the SPDE formulation of the most promi-
nent linear filter, the heat equation which yields the Gaussian
Scale-Space (Iijima 1962, 1963; Witkin 1983). We define
the classical diffusion PDE

∂tu = �u (19)

as an evolution equation acting on the image gray values u.
Instead of the usual intensity image u(t, x), we directly use
the gray-value functions u(t, x, ξ) with the random fields
introduced in Sect. 2. Thus, the stochastic version of the heat
equation reads:

Given initial data f (x, ξ) find a family {u(t, x, ξ)}t∈R+
of filtered versions of this image such that

∂tu(t, x, ξ ) − �u(t, x, ξ ) = 0 a.e. in R
+ × D × �,

∂νu(t, x, ξ ) = 0 a.e. on R
+ × ∂D × �,

u(0, x, ξ) = f (x, ξ) a.e. in D × �.

(20)

We will now discretize this equation step-by-step. First
let us apply the temporal backwards Euler scheme. This
means we replace the temporal derivative by a back-
ward difference quotient ∂tu(t, x, ξ ) ≈ (u(t, x, ξ ) − u(t −
τ, x, ξ))/τ , introducing the time-step τ . Using the notation
un(x, ξ) := u(nτ, x, ξ) we obtain:

For n = 1,2,3, . . . find un : D × � → R such that

un(x, ξ) − τ�un(x, ξ) = un−1(x, ξ) a.e. in D × �,

∂νu
n(x, ξ) = 0 a.e. on R

+ × ∂D × �,

(21)

where u0(x, ξ) = f (x, ξ) a.e. in D × �.

Consequently we have transferred the parabolic SPDE (20)
into a sequence of elliptic SPDEs (21). Each of the equa-
tions of this sequence must be interpreted in a weak sense:
Following the stochastic Galerkin Method (Deb et al. 2001),
we first need to project each equation to a set of test func-
tions z in the same way as done for a standard Galerkin
Method (Thomee 1984). Second, we integrate the expres-
sion by parts. The difference is that in the stochastic case all
z reside in the space H 1(D)⊗L2(�) introduced in Sect. 2.2.
The projection is done as follows: We multiply each equa-
tion by a test-function z ∈ H 1(D) ⊗ L2(�), we integrate
over the physical domain R and consider the expectation of
the resulting integrals. This yields

E

[∫

D

un(x, ξ) z(x, ξ ) dx − τ

∫

D

�un(x, ξ) z(x, ξ ) dx

]

= E

[∫

D

un−1(x, ξ) z(x, ξ ) dx

]

for all test-functions z ∈ H 1(D) ⊗ L2(�). Integrating by
parts in D leads to the weak form of the SPDE (21)

E

[∫

D

un(x, ξ) z(x, ξ ) dx − τ

∫

D

∇un(x, ξ) · ∇z(x, ξ ) dx

]

= E

[∫

D

un−1(x, ξ) z(x, ξ ) dx

]
. (22)

Having derived the weak form, we need to represent the so-
lution un in a finite-dimensional sub-space, i.e. we consider
un ∈ Hp,h

still . To do so, we substitute the expansion (4) into
this weak form. In addition to this we plug in the basis func-
tions Hβ(ξj )Pj (x) as test-functions z. Using the linearity of
the expectation to pull the coefficients (un)iα and (un−1)iα in
front of the integrals we get

∑

i∈I

p∑

α=1

(un)iα

(
E

[∫

D

Hα(ξi)Pi(x)Hβ(ξj )Pj (x) dx

]

− τE

[∫

D

(
Hα(ξi)∇Pi(x)

) · (Hβ(ξj )∇Pj (x)
)
dx

])

=
∑

i∈I

p∑

α=1

(un−1)iαE

[∫

D

Hα(ξi)Pi(x)Hβ(ξj )Pj (x) dx

]

for all j ∈ I and β = 1, . . . , p. Remember, the coefficients
(un)iα are the stochastic modes of u at pixel positions i, i.e.
images containing weights belonging to polynomials Hα of
order α.

This is a system of equations which can be written in a
block form

p∑

α=1

(Mα,β + τLα,β)(Un)α =
p∑

α=1

Mα,β(Un−1)α

for β = 1, . . . , p (23)

ordering the unknowns of un as in (5) to get Un. The ma-
trices Mα,β and Lα,β are stochastic mass- and stiffness-
matrices, respectively. They have the entries

(Mα,β)ij = E

[∫

D

Hα(ξi)Pi(x)Hβ(ξj )Pj (x) dx

]

=
(∫

�

Hα(ξi)Hβ(ξj ) ρ(ξ)dξ

)

×
(∫

D

Pi(x)Pj (x) dx

)

= C
i,j
α,β

(∫

D

Pi(x)Pj (x) dx

)
, (24)
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Fig. 6 Structure of the block system of the stochastic heat equa-
tion (23)

(Lα,β)ij = E

[∫

D

(
Hα(ξi)∇Pi(x)

) · (Hβ(ξj )Pj (x)
)
dx

]

=
(∫

�

Hα(ξi)Hβ(ξj )ρ(ξ)dξ

)

×
(∫

D

∇Pi(x) · ∇Pj (x) dx

)

= C
i,j
α,β

(∫

D

∇Pi(x) · ∇Pj (x) dx

)
(25)

where we have used the tensor C from (18). The matri-
ces result from the classical mass- and stiffness-matrices by
an entry-wise multiplication with the expectation of pair-
products of stochastic basis functions. The coefficient C

i,j
α,β

is zero for α �= β due to the orthogonality of the basis
functions Hα . Consequently the resulting system is block-
diagonal (cf. Fig. 6) where each diagonal block corresponds
to the smoothing of one stochastic mode of the image.

Remark 3 The fact that the stochastic heat equation leads to
a block diagonal system is due to the linearity of the heat
equation. Already in Sect. 3.3 we have seen that a nonlinear
operator couples the stochastic modes and thus results in a
dense system (in the stochastic space).

Due to the block structure we can implement the solution
of the stochastic heat equation very efficiently, because we
can use existing deterministic FEM code on each of the sto-
chastic modes separately, provided we have multiplied the
deterministic system matrix component-wise with the ten-
sor C

ij
α,β . We are going to discuss results of the stochastic

linear diffusion in Sect. 4.4.

4.2 Perona Malik Diffusion

We will now implement a stochastic version of the well
known nonlinear Perona Malik diffusion (Perona and Malik

1990) in order to demonstrate the influence of its non-linear
behavior. Proceeding analogously to Sect. 4.1 we formulate
this problem as:

Given initial data f (x, ξ) find a family {u(t, x, ξ)}t∈R+
of filtered versions of this image such that

∂tu(t, x, ξ) − div(g(|∇u(t, x, ξ )|)∇u(t, x, ξ ) = 0

a.e. in R
+ × D × �,

∂νu(t, x, ξ) = 0 a.e. on R
+ × ∂D × �,

u(0, x, ξ) = f (x, ξ) a.e. in D × �.

Here g is the edge indicator function we have already
worked with in Sect. 3.4.

Remark 4 It is known that the Perona Malik model suf-
fers from an ill-posedness which leads to non-existence of
solutions (Kichenassamy 1997). Since numerical schemes
unavoidably introduce regularizations, the ill-posedness in
general does not lead to problems in practice. However, we
emphasize that in our framework it is straight-forward to im-
plement the regularized Perona-Malik model as introduced
by Catté et al. (1992), which uses a smoothed version uρ

of the image u to compute the diffusion tensor g(|∇uρ |).
In the FEM context this smoothing can be obtained by one
scale step of the (stochastic) heat equation (cf. Sect. 5.5).

Again we apply the backward Euler approximation of the
temporal derivative and evaluate the non-linearity at the old
time-step leading to a semi-implicit scheme. Interpreting the
equation in a weak sense yields

E

[∫

D

un(x, ξ) z(x, ξ ) dx

−τ

∫

D

g(|∇un−1(t, x, ξ )|)∇un(x, ξ) · ∇z(x, ξ ) dx

]

= E

[∫

D

un−1(x, ξ)z(x, ξ ) dx

]

for all test functions z ∈ H 1(D) ⊗ L2(�). We observe that
only the second term differs from its linear analog (22), and
only by the factor g(|∇un−1(t, x, ξ )|), i.e. the nonlinearity
which is treated explicitly here. Considering un ∈ Hh,p

still as
above leads to a system of equations

∑

i∈I

p∑

α=1

(un)iα

(
E

[∫

D

Hα(ξi)Pi(x)Hβ(ξj )Pj (x) dx

]

− τE

[∫

D

(
p∑

γ=1

∑

k∈I
(Gn)kγ Hγ (ξk)Pk(x)

)

× (
Hα(ξi)∇Pi(x)

) · (Hβ(ξj )∇Pj (x)
)
dx

])
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=
∑

i∈I

p∑

α=1

(un−1)iαE

[∫

D

Hα(ξi)Pi(x)Hβ(ξj )Pj (x) dx

]

for each β = 1, . . . , p and j ∈ I . Here we have substituted
the expansion (4) for the edge indicator g(|∇un|) which has
been derived in Sect. 3.4, i.e. (Gn)kγ denotes the stochastic
modes of g.

Remark 5 For the classical deterministic diffusion equation
we have to assert that the diffusion tensor is positive def-
inite such that the resulting equation is elliptic and the re-
sulting bilinear form coercive. An analogous condition must
hold for the stochastic diffusion equation (Deb et al. 2001),
and we have to take care of the positivity of the stochas-
tic process of the diffusion tensor g. In case the positiv-
ity is violated, the stochastic process describing the distri-
bution of the diffusion tensor must be truncated such that
it stays away from zero. If f (ξ, x) describes the diffusion
tensor at a fixed location x ∈ D, a truncated process would
be f̃ (ξ, x) = max{c, f (ξ, x)} for some constant 0 < c � 1.
Consequently, all integrations in the weak form of the equa-
tion must use the truncated process f̃ . However, in our nu-
merical experiments we did not encounter any problems
with the projection and quadrature method described in
Sects. 3.4 and 3.6.2 and the resulting g was always positive.

The above system of equations is again a block-system
which can be written as
p∑

α=1

(
Mα,β + τ(Ln)α,β

)
(Un)α =

p∑

α=1

Mα,β(Un−1)α

for β = 1, . . . , p

if we order the unknowns of un as in (5) to get Un. The
mass-matrices Mα,β are as before in (24) and (Ln)α,β is now
(
(Ln)α,β

)
ij

= E

[∫

D

(
p∑

γ=1

∑

k∈I
(Gn)kγ Hγ (ξk)Pk(x)

)

× (
Hα(ξi)∇Pi(x)

) · (Hβ(ξj )Pj (x)
)
dx

]

=
p∑

γ=1

∑

k∈I
(Gn)kγ

(∫

�

Hα(ξi)H
β(ξj )Hγ (ξk)ρ(ξ)dξ

)

×
(∫

D

∇Pi(x) · ∇Pj (x)Pk(x) dx

)

=
p∑

γ=1

∑

k∈I
(Gn)kγ B

i,j,k
α,β,γ

(∫

D

∇Pi(x) · ∇Pj (x)Pk(x) dx

)
.

(26)

This block system is not block-diagonal any more because
of the stochastic diffusion tensor g which leads to an entry-

wise multiplication and summation with the tensor B in the
block system.

Integration of the entries of (Ln)α,β can be simplified by
using an inexact integration scheme. If E denotes one hexa-
hedral element of the grid, we can use

p∑

γ=1

∑

k∈I
(Gn)kγ B

i,j,k
α,β,γ

(∫

E

∇Pi(x) · ∇Pj (x)Pk(x) dx

)

≈ G̃
i,j
α,β

∫

E

∇Pi(x) · ∇Pj (x) dx

where

G̃
i,j
α,β = 1

4

p∑

γ=1

∑

k∈I∩E

(Gn)kγ B
i,j,k
α,β,γ

is the evaluation of the diffusion coefficient at the center-
point of the element E. Using this approximation simplifies
implementation of the matrix assembly, since existing FEM
code for the Perona-Malik model can be reused.

4.3 Numerical Aspects and Efficiency

In (24), (25), and (26) we have seen that for standard diffu-
sion models the local stochastic mass- and stiffness-matrices
result from an entry-wise multiplication of the classical
mass and stiffness matrices with the coefficients of the ten-
sors A, B , and C from (18). This means that in the standard
case the additional effort for the assembly of the local sto-
chastic matrices is just one multiplication with the tensor
coefficient per local matrix entry. The tensors A, B , and C

as well as local standard mass- and stiffness-matrices can be
computed in advance and stored in lookup tables.

For the stochastic heat equation and the stochastic Per-
ona Malik equation the resulting linear system of equations
has p × p blocks (cf. Fig. 10), where p is the number of
stochastic modes used in the expansion (4). Each of those
blocks has the size of the corresponding classical determin-
istic problem, i.e. N × N , where N is the number of pixels
in the image. Consequently the dimension of the stochastic
linear system is (pN) × (pN). Since the systems are sym-
metric and positive definite they can be solved by standard
iterative linear solvers like e.g. the conjugate gradient (CG)
method (Avriel 2003).

As a consequence of the local support of the basis func-
tions Pi the resulting systems are sparse. Therefore, matrix
vector multiplications in the iterative CG solver need an ef-
fort of O(p2N) in contrast to O(N) for the deterministic
matrices, since the number of bands is multiplied by p and
the number of unknowns is multiplied by p as well. Since
a CG solver converges after M steps if the number of un-
knowns is M , we conclude that the effort of the stochastic
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Fig. 7 For a stochastic input
image (mean and variance
depicted in the top left frame)
we show several scale steps
from the linear diffusion (top
frame) and the nonlinear
Perona-Malik diffusion (bottom
frame). In each frame the top
row shows the mean and the
bottom row shows the variance.
For the linear diffusion the
variance of the image drops by
more than one order of
magnitude per scale step. Thus
the variance-images appear
black. In contrast to that, the
coupling of the image gradient
onto the variance is nicely
visible from the Perona-Malik
images. One realization of the
random field (i.e. a noisy image)
is shown in the bottom left
image

variant is equal to the deterministic effort multiplied by a
factor of p2, i.e. O(p2N) instead of O(N).

The experiments shown in Fig. 8 below show that our
framework outperforms a naive approach like Monte-Carlo
(MC) sampling. In this MC approach samples are drawn
from the input distribution, i.e. different noisy images. To
these images the standard, deterministic algorithm is ap-
plied. Doing so, the output distribution is sampled. In fact,
for two stochastic modes p = 2 the effort of our algorithm
corresponds to p2 = 4 Monte-Carlo samples for which a
good approximation of the distribution in general is not ob-
tained (cf. Fig. 8).

4.4 Results

In Fig. 7 we present results of the linear and nonlinear dif-
fusion applied to a stochastic test-image. We have chosen to
work with a stochastic basis containing Legendre polynomi-
als up to order p = 2. The image is of resolution 129 × 129
and the gray values range in the interval [0,1]. For the sake
of simplicity, the variance of the input data is defined by set-

ting the second mode to

f2(x) = δ |x|, δ = 0.3

129
√

2

and letting all higher modes be zero. This means that we
model a spatially varying uniform distribution of the input
gray values (cf. Fig. 1, top). In Sect. 5.7 we will model
Gaussian-shaped distributions as well.

Let us note that for uniform distributions over an inter-
val [c − d, c + d] the mean is given by c and the variance
is σ 2 = d2/3. Conversely, given the variance σ 2 the interval
half width is d = √

3σ . Using two modes for the descrip-
tion of the stochastic process and setting the second mode
f2(x) = a means that we have a variance of

Var (f ) = a2〈H 2,H 2〉 = a2
∫ 1

−1
ξ2
i ρi(ξi)dξi

= a2
∫ 1

−1

ξ2
i

2
dξi = 1

3
a2.

This results from the fact that the second Legendre basis
function is H 2(ξi) = ξi and the PDF is ρi(ξi) = 1/2. We
see that the second mode f2 = a directly represents the half
with of the interval of a uniform distribution.
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Fig. 8 A comparison of the
stochastic Perona-Malik model
with Monte-Carlo experiments
is shown for the scale step
(n = 6). As before, the top row
shows the mean and the bottom
row the variance. Left: Input
distribution of a test image (cf.
Fig. 7). Middle left: Result from
the stochastic Perona-Malik
model discretized with the
stochastic Galerkin (SG)
method. Middle right: Monte
Carlo experiment with 4
samples. Right: Monte Carlo
Experiment with 50 samples

In our example the variance of the input data ranges from
zero to

σ = maxx f2√
3

= maxx δ|x|√
3

= 0.3√
3
.

This means in our example we model an uncertainty of the
gray values varying up to ±0.3 around the mean gray value.
For the computations we have chosen a time-step of τ = 1
and we use λ = 0.02 (see (11)).

Looking at the top frames in Fig. 7 we see, that no struc-
ture from the expectation images (top) can be seen in the
variances (second row) and vice versa. We see that as ex-
pected from theory the heat equation damps the modes sep-
arately without coupling them. In fact the damping is very
fast, and the maximum value of the variance drops by more
than one order of magnitude per scale-step. Thus the images
depicted in the corresponding row of Fig. 7 are black. If we
adjusted the contrast, the variances of the smoothed image
would have the same structure as the input variance.

In contrast to that, the variance of the images from
Perona-Malik diffusion show the structure of the gradi-
ent, i.e. we see the coupling of the modes. There is also
a smoothing of the variance present with increasing scale
step n. In the limit n → ∞ the results of the linear and non-
linear diffusion models will be the same, i.e. an image of
constant gray value and zero variance.

In Fig. 8 we show a comparison of the stochastic Perona-
Malik diffusion results with a Monte-Carlo experiment. To
this end we have created samples of the input image distribu-
tion shown in Fig. 7, applied our deterministic Perona-Malik
diffusion solver, and computed the mean and the variance
of the resulting images through the standard formulas from
statistics. This experiment can be seen as a validation of
the Galerkin approach for the stochastic Perona Malik equa-
tion. Indeed the Monte-Carlo experiment seems to converge
to the result from our new approach. However, we empha-
size that the new approach is much more efficient than the

Monte-Carlo method. To compute the mean and the variance
of the output the stochastic Galerkin method needs the effort
of about 4 deterministic runs. From the figures we see that
with just 4 samples the results from the Monte-Carlo method
is quite bad. This underlines the power of our framework.

Finally, in Fig. 9 we investigate the edge enhancing char-
acter of the stochastic Perona Malik equation. Starting the
evolution with a blurred version of the test-pattern already
used before we indeed get an enhancement of edges, which
however depends on the variance of the input data. From
the figure we see that the edge enhancement occurs first in
regions with small variance (i.e. top left corner of the test
image). For later time steps the enhancement also affects ar-
eas with larger variance. This is visible in the figures by an
enhancement which progresses from the top left corner of
the image to the lower right. In this example the coupling
of the image gradients on the variance of the output is very
mild. In fact, the structure of the image can be seen just very
weakly in the variance images. We use a time-step τ = 5 and
an edge-indicator parameter λ = 0.002.

5 Optical Flow Computations

In the following section the stochastic finite element method
is applied to slightly more complex models for the well
known optical flow problem. Intentionally we have chosen
very simple models such as:

• the Horn and Schunck (HS) model (Horn and Schunck
1981),

• a discontinuity preserving optical flow model (Black and
Anandan 1991; Cohen 1993; Weickert 1998), and

• the combined local global (CLG) model (Bruhn et al.
2002; Bruhn et al. 2005).
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Fig. 9 The edge enhancing
property of the stochastic
Perona Malik model is
investigated experimentally.
From left to right: Input image
distribution and three scale steps
of the stochastic Perona Malik
model. Note the edge
enhancement, which occurs in
regions of low variance, and
which is progressing from the
top left corner of the image with
increasing scale

5.1 A Stochastic Optic Flow Equation

Let us first derive an optical flow equation for stochas-
tic images. We consider a given noisy image sequence f :
D × I → R on a spatial domain D ⊂ R

2 and a time interval
I := [0, T ] for T > 0. To distinguish spatial from spatio-
temporal derivatives we introduce the notation ∇x,t for the
space-time gradient and ∇x for the purely spatial gradient.
The partial derivatives are denoted with ∂1, ∂2, and ∂t and,
finally, we write R := D × I .

We search for a vector field (optical flow field) w : R ×
� → R

2 such that w = (u, v) describes the motion of struc-
tures inside the image sequence f . Classically, gray values
are preserved along trajectories x(t) of objects through the
image sequence. Here gray values are preserved along sto-
chastic trajectories x(t, ξ), i.e.

f (x(t, ξ), t, ξ ) = const.

The stochastic trajectories yield a stochastic optical flow
field w(x, t, ξ) = ẋ(t, ξ ). As for the classical optical flow
equation, we differentiate the brightness constancy with re-
spect to time t :

0 = ∂t (f (x(t, ξ ), t, ξ))

= ẋ(t, ξ) · ∇xf (x(t, ξ ), t, ξ) + ∂tf (x(t, ξ), t, ξ )

+ ξ̇∂ξf (x(t, ξ ), t, ξ).

The temporal behavior of the image sequence is modeled by
the stochastic process f , but the vector of random variables
ξ is time independent (cf. Sect. 2.3). This means that ξ does
not change over time t (i.e. ξ̇ = 0), thus we can omit the
last term. So we can formulate our stochastic optical flow
constraint as

0 = w(x, t, ξ) · ∇xf (x, t, ξ) + ∂tf (x, t, ξ ) a.e. �. (27)

This equation is completely analog to the classical optical
flow equation, and as such we observe the ill-posedness also
known as the aperture problem (see e.g. Haussecker and
Spies 1999).

5.2 Stochastic Horn and Schunck Model

The standard HS model overcomes the aperture problem by
selecting as the solution the flow field with minimal over-
all gradient. By this we mean that the classical HS solution
minimizes the energy

EHS(w) = ||w · ∇xf + ∂tf ||2 + 1

2
κ||∇x,tw||2

=
∫

R

(w(y) · ∇xf (y) + ∂tf (y))2 dy

+ 1

2
κ

∫

R

∇x,tw(y) · ∇x,tw(y) dy (28)

where the first term usually is called a data term and the
second a smoothness or regularization term. Here we use a
regularization in space and time which usually yields bet-
ter results (Weickert and Schnörr 2001). Also the stochas-
tic analog of the HS model regularizes the ill-posed optic
flow equation by requiring the gradient of the flow field
∇x,tw(x, t, ξ) to be small. However, the peculiarity of the
stochastic approach is that we take the |||·||| norm as it has
been introduced in Sect. 2 instead of the L2-norm in (28).
Thus, our energy involves the expectation

E(w) = |||w · ∇xf + ∂tf |||2 + 1

2
κ|||∇x,tw|||2

= E

[∫

R

(w(y, ξ) · ∇xf (y, ξ) + ∂tf (y, ξ))2 dy

+ 1

2
κ

∫

R

∇x,tw(y, ξ) · ∇x,tw(y, ξ) dy

]
(29)
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which in fact is the expectation of the classical HS energy
EHS from (28) applied to stochastic image sequences, i.e.

E(w) = E[EHS(w(y, ξ))]. (30)

Remark 6 Equation (30) can be interpreted as follows: If
we insert a stochastic optical flow field into the classical HS
energy EHS we obtain a stochastic process that yields the
distribution of EHS with respect to ξ . Taking the expecta-
tion within (30) means that we consider the expected energy
from this distribution and minimize it.

As in the classical approach, we derive the Euler equa-
tions as a necessary condition for a minimum of this en-
ergy. As there, we vary the components u and v of the
flow field w independently. To do so, we select a function
z : D × I × � → R

2 and compute a variation of the energy
in direction zek for k = 1,2, where e1,2 are the Euclidean
basis vectors of R

2. This means k = 1 and 2 belong to u and
v, respectively. Using the observation (30) we get

0 = d

dε
E(w + εzek)

∣∣∣∣
ε=0

= d

dε
E[EHS(w + εzek)]

∣∣∣∣
ε=0

= E

[
d

dε
EHS(w + εzek)

∣∣∣∣
ε=0

]

were we have assumed the energies involved to be finite,
such that we can interchange differentiation and integration.
The above equation means that the Euler equations for the
stochastic energy (29) are just the expectation of the Euler
equations of the classical energy EHS and read

0 = E

[∫

R

z(y, ξ ) ∂1f (y, ξ)

× (
w(y, ξ) · ∇xf (y, ξ) + ∂tf (y, ξ)

)
dy

+ κ

∫

R

∇x,tu(y, ξ) · ∇x,t z(y, ξ ) dy

]
,

0 = E

[∫

R

z(y, ξ ) ∂2f (y, ξ)

× (
w(y, ξ) · ∇xf (y, ξ) + ∂tf (y, ξ)

)
dy

+ κ

∫

R

∇x,t v(y, ξ) · ∇x,t z(y, ξ ) dy

]
.

(31)

Thus, the stochastic optical flow w is a solution of the
SPDE-system

∂1f (y, ξ)(w(y, ξ ) · ∇f (y, ξ) + ∂tf (y, ξ)) − κ�u(y, ξ ) = 0

a.e. in R × �,

∂2f (y, ξ)(w(y, ξ ) · ∇f (y, ξ) + ∂tf (y, ξ)) − κ�v(y, ξ) = 0

a.e. in R × �

(32)

in the weak sense defined by (31). We note that this SPDE
system is completely analog to the classical system which
results from a minimization of the HS Energy.

5.3 Discretization

Let us derive the linear systems of equations which result
from the discretization of the Euler equations of the opti-
cal flow energies (32). In the following we consider only
one equation of the system, since the derivation for the other
equation is completely analog.

We start by substituting f (y, ξ), u(y, ξ), and v(y, ξ) with
their respective Galerkin expansions (6) for stochastic im-
age sequences into the weak form (cf. (31))

0 = E

[∫

R

z ∂1f (w · ∇f + ∂tf ) dy + κ

∫

R

∇u · ∇z dy

]

=: E[I ] + κE[II ].
Together with the test function z = Hβ(ξjx )Pj (y) we get

E[I ] = E

[
Hβ(ξjx )Pj (y)

∑

k∈J

p∑

γ=1

f k
γ Hγ (ξkx )∂1Pk(y)

×
(∑

i∈J
∑p

α=1 ui
αHα(ξix )Pi(x)

∑
i∈J

∑p

α=1 vi
αHα(ξix )Pi(x)

)

×
∑

l∈J

p∑

δ=1

f l
δH

δ(ξlx )∇Pl(y)

]

+ E

[
Hβ(ξjx )Pj (y)

∑

k∈J

p∑

γ=1

f k
γ Hγ (ξkx )∂1Pk(y)

×
∑

l∈J

p∑

δ=1

f l
δH

δ(ξlx )∂tPl(y)

]

which can be collapsed to

E[I ] =
∑

i∈J

p∑

α=1

(
∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δ

×
∫

�

Hα(ξix )H
β(ξjx )H

γ (ξkx )H
δ(ξlx ) ρ(ξ)dξ

×
∫

R

Pi(y)Pj (y)∂1Pk(y)

× (
∂1Pl(y)ui

α + ∂2Pl(y)vi
α

)
dy

)

+
∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δ

×
∫

�

Hβ(ξjx )H
γ (ξkx )H

δ(ξlx ) ρ(ξ)dξ

×
∫

R

Pj (y)∂1Pk(y)∂tPl(y) dy. (33)
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Fig. 10 Left: Structure and
sub-structure of the block
system (37). Right: Non-zero
pattern of a block matrix for two
stochastic moments (i.e. p = 2),
a spatial size of 4 × 4 pixels and
4 frames

The second term becomes

E[II ] =
∑

i∈J

p∑

α=1

ui
α

∫

�

Hα(ξix )H
β(ξjx ) ρ(ξ)dξ

×
∫

R

∇Pi(y) · ∇Pj (y) dy. (34)

This identity leads to the stiffness matrix Lα,β which we al-
ready defined for the heat equation in (25). Moreover, using
the tensors A and B from Sect. 3.6.2 we can define the ma-
trices

(Sα,β
mn )ij =

N∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δA
ix,jx ,kx ,lx
α,β,γ,δ

×
∫

R

Pi(y)Pj (y)∂mPk(y)∂nPl(y) dy, (35)

as well as the vector

(Rβ
m)j =

∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δB
jx,kx ,lx
β,γ,δ

×
∫

R

Pj (y)∂mPk(y)∂tPl(y) dy, (36)

for m,n = 1,2, i, j = 1, . . . ,N and α,β = 1, . . . , p. Now,
we can write the discretized Euler equations as

p∑

α=1

((
S

α,β

11 S
α,β

12

S
α,β

21 S
α,β

22

)
+ κ

(
Lα,β 0

0 Lα,β

))(
Uα

V α

)

= −
(

R
β

1

R
β

2

)
, for β = 1, . . . , p. (37)

This equation describes a block system of dimension 2pN ×
2pN and consists of p blocks corresponding to the stochas-
tic modes. The blocks themselves contain 2 × 2 sub-blocks
corresponding to the two coordinate directions. Each block
is similar to the deterministic system and each sub-block is
a N × N matrix. In Fig. 10 we show the structure of this

block-system. Again it is dense in the stochastic space (i.e.
all blocks are non-zero), since the integrals involve multipli-
cations with more than two factors. However, the stiffness-
matrix Lα,β (corresponding to the smoothness term) appears
on the block-diagonals only as we have already seen for the
heat equation.

5.4 Discontinuity-Preserving Optical Flow Computation

As seen above, the HS energy EHS from (28) consists of
a data term and a regularization term. The regularization
term consists of a linear diffusion (cf. Sect. 4.1) on the ve-
locity components u and v. Discontinuity-preserving opti-
cal flow (Black and Anandan 1993; Cohen 1993; Weickert
1998) contains the same data term as in EHS, but it uses a
nonlinear regularization term instead of a linear one. This
nonlinear regularization boils down to Perona Malik non-
linear diffusion as in Sect. 4.2. Having a discretization for
nonlinear diffusion at hand, it is now straight forward to
generalize the discontinuity-preserving optical flow model
to a stochastic setting as well. This yields the SPDE sys-
tem

∂1f (y, ξ)(w(y, ξ ) · ∇f (y, ξ) + ∂tf (y, ξ))

− κ div(g(|∇f (y, ξ)|)∇u(y, ξ )) = 0,

(38)
∂2f (y, ξ)(w(y, ξ ) · ∇f (y, ξ) + ∂tf (y, ξ))

− κ div(g(|∇f (y, ξ)|)∇v(y, ξ )) = 0,

in R and a.e. �, which is interpreted in a sense analog to
(31). To discretize the model we only have to replace the
homogeneous stiffness matrices Lα,β from (37) by the in-
homogeneous one defined in (26). As for the HS energy we
get a system of equations like (37) which has a structure as
shown in Fig. 10.

Note that for this model, one can also use a regularized
version fρ of the input image sequence inside the edge indi-
cator function, i.e. g(|∇fρ(y, ξ)|). We emphasize that as for
the Perona-Malik model from Sect. 4.2 this extension can
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straight forwardly be incorporated within our framework.
Here, in our FEM setting, the smoothing can be obtained
by e.g. one small scale step of length ρ2/2 the stochastic
heat equation, which takes the image sequence f as initial
data.

5.5 Combined Local Global (CLG) Method

In Sect. 5.4, above, we exchanged the linear regulariza-
tion term in the HS energy EHS by a nonlinear one. Here
we keep the linear regularization term, but exchange the
data term. Let us denote the homogeneous motion vector
with w̄ := (u, v,1). The classical HS energy from (28) then
reads

EHS(w) = ‖w̄ · J w̄‖ + 1

2
κ‖∇x,tw‖2 (39)

where we used the notation J = (∇x,tf )T (∇x,t f ) for the
outer product of the spatio-temporal gradient ∇x,tf of
the image sequence f . Smoothing this 3 × 3 tensor J

component-wise yields the so-called structure-tensor Jρ

(Jähne 1993). In a finite difference setting ρ indicates the
variance of a Gaussian kernel used to smooth J . Again
we consider Jρ as the solution of the heat equation (as
in Sect. 4.1) for a small single time step of length ρ2/2
with initial data J . Such a diffusion has to be applied
independently to each structure tensor component Jmn,
m,n ∈ {1,2, t}. Using Jρ instead of J in the HS en-
ergy EHS yields the stochastic version of the CLG en-
ergy

E(w) := |||w̄ · Jρw̄||| + 1

2
κ|||∇x,tw|||2.

As above Euler-Lagrange equations are given by the expec-
tation of the Euler-Lagrange equations of the deterministic
model, thus the solution obeys

0 = E

[∫

R

z(y, ξ )
(
J 11

ρ (y, ξ)u(y, ξ ) + J 12
ρ (y, ξ)v(y, ξ)

+ J 1t
ρ (y, ξ)

)
dx

+ κ

∫

R

∇x,tu(y, ξ) · ∇x,t z(y, ξ ) dx

]
,

0 = E

[∫

R

z(y, ξ )
(
J 21

ρ (y, ξ)u(y, ξ ) + J 22
ρ (y, ξ)v(y, ξ)

+ J 2t
ρ (y, ξ)

)
dx

+ κ

∫

R

∇x,t v(y, ξ) · ∇x,t z(y, ξ ) dx

]
.

The discretization is completely analog to the discretization
of the stochastic HS model from Sect. 5.2. To obtain matri-
ces similar to (35) let us denote the coefficients of the ex-
pansion (6) of the smoothed structure tensor with (Jmn

ρ )kγ
for m,n ∈ {1,2, t}, pixel position k ∈ J and expansion or-
der γ = 1, . . . , p and define

(S̃α,β
mn )ij =

N∑

k∈J

p∑

γ=1

(Jmn
ρ )kγ B

ix,jx ,kx

α,β,γ

×
∫

R

Pi(y)Pj (y)Pk(y) dy, (40)

and a right hand side

(R̃β
m)j =

∑

k∈J

p∑

γ=1

(Jm,t
ρ )kγ C

jx,kx

β,γ

∫

R

Pj (y)Pk(y) dy.

The block system is the same as (37) where S and R have
been replaced with the ones from above.

Using an inexact quadrature rule as in Sect. 4.2 we can
simplify the computation of the entries of S̃

p∑

γ=1

∑

k∈J
(Jmn

ρ )kγ B
ix,jx ,kx

α,β,γ

(∫

E

Pi(x)Pj (x)Pk(x) dx

)

≈ (J̃ mn
ρ )

i,j
α,β

∫

E

Pi(x)Pj (x) dx

where

(J̃ mn
ρ )

i,j
α,β = 1

8

p∑

γ=1

∑

k∈J ∩E

(Jmn
ρ )kγ B

ix,jx ,kx

α,β,γ

and similarly for the right-hand-side R̃.

5.6 Numerical Aspects and Efficiency

As for the standard diffusion models the local stochastic ma-
trices result from entry-wise multiplications with the coeffi-
cients of the tensors A, B and C from (18). However, in the
present case of nonlinearities in (35), (36), and (40) there is
also a summation over the stochastic modes γ, δ = 1, . . . , p

used in the expansion (4). As for the diffusion models, many
components of the deterministic local matrices can be com-
puted in advance and stored in lookup tables. Due to the
summation over the stochastic modes the assembly effort
is multiplied by a factor of p2 for the stochastic Horn and
Schunck model (35), and by a factor of p for the CLG ap-
proach (40). However in the case of the CLG model we need
additional effort for the computation and the smoothing of
the structure tensor.

Again the resulting linear systems of equations are
sparse, symmetric, and positive definite. Thus we can use
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Fig. 11 We consider a
test-sequence of a textured
square moving to the right
(frame 5 shown in the top left
picture). The gray values are
uniformly distributed and from
top to bottom we increase the
variance of the input data and
show the color coded optical
flow field. It is clearly visible
how the mean and the variance
of the flow field capture the
gradients of the input data.
Moreover we see that with
increasing smoothness of the
flow field the variance
decreases. The color wheel on
the lower left indicates the color
coding of the flow directions

a CG method for the solution of the systems. Since we
are dealing with vector valued problems, the dimension of
the stochastic system is (2pN) × (2pN). As above for the
diffusion models, the effort for the solution is multiplied
by a factor of p2 in comparison to the deterministic sys-
tem.

In the following section we will present an experiment
that shows how our framework outperforms a Monte-Carlo
sampling approach. For the computation of mean and vari-
ance of the output we would need p = 2 modes. Thus
the effort of our framework is approximately equal to 4
Monte-Carlo samples for which a convergence can not be
expected.

5.7 Results

Let us start with the computation of the optical flow field of
two test-sequences. First we consider a disc which is filled
with a sin(cxx) sin(cyy) pattern and which moves to the
right in front of a background that has a slight gradient in
x-direction. For this first example we consider only two sto-
chastic modes, thus approximating the distributions of the
input gray-values with a uniform distribution. In Sect. 3.1
we have seen how the variance can be computed from the
modes of the polynomial expansion.

In Fig. 11 we show results of our computations with the
stochastic HS model. The mean gray values of the image
sequence are in the range [0,1]. In our experiment we have
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Fig. 12 From a sequence
showing a moving textured
square (spatial resolution
65 × 65, 11 frames, mean shown
in (a), for the variance see the
text) we extract the optical flow
with the HS model (c), with the
discontinuity preserving
model (d) and with the CLG
approach (e). The mean of the
edge-indicator function is
depicted in (b). For the flow
fields we show the maximum
component of the covariance
matrix in the bottom row

considered variances of the input data f to be 2−6, 2−8 and
2−10. This corresponds to errors in the input gray values of
21%, 11%, and 5%, respectively. Moreover we have studied
the influence of the smoothing parameter κ .

We see that in general there is a high variance of the
flow field in the vicinity of edges which are orthogonal to
the direction of motion. This behavior can be interpreted as
the uncertainty of the location of edges of the moving ob-
ject.

Fixing the smoothness parameter κ , we see from the im-
ages that with increasing variance of the input data f the
mean of the flow field becomes more inhomogeneous in-
side the moving square. The same behavior can be observed
for the variance of the flow field. In fact the mean and vari-
ance capture the structure of the texture, because the model
is non-linear in the derivatives of f . In Sect. 3.3 and Fig. 4
we have already seen that a nonlinear function couples the
stochastic modes, thus an output variance is sensitive to gra-
dients of the mean of the input data. For fixed variance of
the input data and increasing smoothness κ the influence of
the gradients in the input mean is weakened and thus the
amplitude of the variance of the flow field is damped. This
behavior we have already seen from the heat equation in
Sect. 4.1 (cf. also Sect. 4.4). Still there is uncertainty about
the edges of the moving objects, thus the variance remains
high in those regions.

In the second numerical test we consider the textured
square shown in Fig. 12 which moves to the right with unit
speed w = (u, v) = (1,0) in front of a textured background.
The spatial resolution is of size 65 × 65 and the sequence
has 11 frames. We consider 4 stochastic modes (i.e. p = 4)
and set the image shown in Fig. 12 to be the mean. The gray
values of the mean image range from 0 to 1. Furthermore
we set

f2(y) ≡ 2.96281 · 10−2, f3(y) ≡ 0,

f4(y) ≡ 9.87604 · 10−2,

such that we model stochastic processes as the one shown in
the bottom row of Fig. 1.

In Fig. 12 we show the result of the optical flow compu-
tation with the HS model, with the discontinuity preserving
model and the CLG approach. We have used a smoothing
parameter κ = 0.03, set λ = 1/300 and ρ = 0.0075. Ob-
viously, for the edge preserving model the covariance is
high in the vicinity of the edges, whereas the HS model
only yields high variances for edges which are perpen-
dicular to the motion direction. The CLG model shows a
similar behavior although the covariance is smaller since
the smoothing is larger with the chosen set of parame-
ters.

Again, we emphasize the benefit of our approach: In
contrast to existing work our Ansatz does not only yield
bounds for errors or just confidence measures. Indeed we
transform distributions of the input data into distributions of
the output data. Such distributions of the velocity are de-
picted in Fig. 13 for two different locations in the moving
square sequence from the previous experiment. For a pixel
inside the moving object (32/32/5) and for a pixel at its
upper border (32/14/5) the figure shows the resulting ran-
dom processes of the u and v velocity component and their
PDFs.

Let us use our framework to examine the bias of the CLG
approach. The bias B is defined by the difference between
the true optical flow components w0 = (u0, v0) and expec-
tation value E[ŵ] of the estimated optical flow components

B = w0 − E[ŵ].
The bias occurring in optical flow estimators based on least
squares estimation leading to an underestimation of the op-
tical flow components u,v has been extensively examined
(cf. e.g. Van Huffel and Vandewalle 1991; Kearney et al.
1987; Fermüller et al. 2001). For local optical flow estima-
tors, e.g. of Lucas-Kanade type (Lucas and Kanade 1981),
the functional relationship between the estimated optical
flow components û0, v̂0 for noise free input signals (vari-
ance σ 2 = 0) and the estimated optical flow components u,v
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Fig. 13 For two different locations in the moving square image se-
quence we plot the stochastic processes of the x- and y-component of
the velocity as well as the corresponding PDFs. In the top row we con-
sider a location in the center frame of the sequence and in the center
of the moving object. In the bottom row a location in the center frame

and at the boundary of the moving square is considered. The process
is approximated using polynomials of degree three (p = 4). As such
polynomials are antisymmetric around their inflexion point, the PDF is
approximated to be symmetric around its maximum

Fig. 14 Left: We plot (red curve) the value of the x-component u of
the extracted velocity versus the standard deviation σ of the gray values
to investigate the bias of the CLG approach. The theoretical devolution
of the bias (black curve) depending on standard deviation matches our
result very well. Right: The sample mean for two Monte Carlo exper-

iments, one with N = 4 (denoted as MC4, blue curve) and the other
with N = 50 (denoted as MC50, red curve) is depicted. Again, the
theoretical devolution of the bias depending on standard deviation is
shown (black curve). Note that the values on the horizontal axis are
given in percent
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Fig. 15 The estimation of
optical flow from the “street
sequence” is shown. Left: Frame
110 of the sequence. Middle left:
Optical flow of the deterministic
sequence. Right: Optical flow
for the sequence, which has
been supplied with two different
variances of the input gray
values. Again, the mean of the
optical flow is depicted in the
top row, and the maximum entry
of the covariance matrix is
depicted in the bottom row

for noisy input signals (σ 2 > 0) has been derived in Süh-
ling (2006). This relationship can be extended to the CLG-
approach leading to a function of the expectation value de-
pending on the variance of the input signal

E[ŵ] =
(

τu

τu + σ2
u0,

τv

τv + σ2
v0

)
,

B =
(

σ2

τu + σ2
u0,

σ2

τv + σ2
v0

)
.

Here, τu, τv denote real valued parameters that depend on
the input signal. Our framework allows to easily examine
the dependency of the bias on the variance of the input sig-
nal. In Fig. 14 (left) we plot the estimate of the expecta-
tion value E[û] of the x component of the optical flow, us-
ing our stochastic Galerkin (SG) method, (the true under-
lying flow vector is w = (u, v) = (1,0)) versus the stan-
dard deviation σ (in percent) of the input data. In order to
demonstrate the quantitative performance of our framework,
we plot also the theoretical relationships for the expectation
value of the estimated optical flow component. The theoret-
ical curve plotted in both graphs is the same, thus enabling
for a comparison of the SG results with the MC experi-
ments.

In Fig. 14 (right) the sample mean u = 1
N

∑N
j=1 u(j) is

depicted resulting from two Monte Carlo experiments, one
with N = 4 samples (denoted as MC4) and the other with
N = 50 samples (denoted as MC50). We see from the fig-
ures that the optical flow estimate decreases for increas-
ing noise in the input image. Consequently, the bias in-
creases for increasing noise in the input image. We can ob-
serve that the results from our approach correspond very
well to the theoretical curve. In our framework it suffices
to use two stochastic modes p = 2. In that case the ef-
fort of our approach is about p2 = 4 times the effort of
a deterministic CLG approach (cf. Sect. 5.6). For the

Monte Carlo approach (N = 4) with the same computa-
tional complexity, the sample mean shows significant fluc-
tuations and cannot cope with the precision of our ap-
proach.

As soon as we significantly increase the number of sam-
ples (N = 50), we obtain a comparable result also for the
Monte Carlo approach. But the price we have to pay for a
likewise performance is an enormous increase of the num-
ber of estimates from 84 (21 different noise levels times en
effort equivalent to 4 estimates per noise level) to 1050 (21
different noise levels times 50 estimates per noise level) es-
timates. With our framework the system of (37) with entries
(40) must be solved only once per noise level. Thus, this ap-
proach outperforms the naive MC simulation by a very large
factor. We conclude that our framework involves the poten-
tial to analyze the bias of estimators for which it is not yet
know and for which the analytic derivation is cumbersome
or even unfeasible.

Our final numerical experiment deals with the estimation
of optical flow from the “street sequence”. Since for this ar-
tificially generated sequence we do not have any measure-
ment errors, we set the variance of the input data homoge-
neously to three different values. In Fig. 15 we show the
resulting optical flow field as well as the maximum entries
of the covariance matrices of the distributions. The sequence
is of resolution 200 × 200 and its gray values are scaled to
the range [0,1]. We use two stochastic modes p = 2 and set
the parameters to κ = 0.1, ρ = 0.1. For a better comparison
we depict the estimated optical flow from the deterministic
noise free sequence (Var ≡ 0) as well. As in our synthetical
example we see a high variance of the optic flow in regions
of high gradient of the input image. Again, this is due to
the nonlinear dependence of the model on the input data (cf.
Sects. 4.2 and 4.4). Moreover, we see two additional effects
from the images: First, due to the large smoothness coeffi-
cient κ the variance is damped in regions of nearly homoge-
neous gray value. Second, because of the above mentioned
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bias of the optical flow estimation, the magnitude of the op-
tical flow field decreases in particular in regions with low
gradients.

6 Conclusions and Future Work

We have presented a model for the interpretation of images
and image sequences with uncertain gray-values as random
fields. The distribution of gray values for pixels is modeled
by random processes for which we use an approximation
according to the Wiener-Askey polynomial chaos approach.
Moreover, we have presented algorithmic building blocks
for image processing based on the notion of random fields.
These building blocks and the stochastic Galerkin finite ele-
ment method are the key ingredients for a treatment of sto-
chastic energies and stochastic partial differential equations
in computer vision and image processing. We have guided
the reader through the derivation and discretization of sto-
chastic analogs of well known partial differential equations
frequently used in computer vision. The resulting discretiza-
tional schemes are simple, since existing deterministic FEM
code can be reused. Moreover the extended models reduce
to the deterministic ones if all stochastic modes except the
mean mode vanish.

Our framework allows for the efficient study of error
propagation through computer vision models. In contrast
to existing research, our approach does neither a priori as-
sume Gaussian distributions nor does it deliver error bounds
or confidence measures only. In fact the input can be ap-
proximations of arbitrary random processes and distribu-
tions which by our framework are transformed into output
processes and distributions. Previously such results in gen-
eral could be obtained by computationally very expensive
Monte-Carlo simulations only.

We have demonstrated the usefulness of the framework
with various numerical experiments. For linear models there
is no coupling between the modes. For the heat equation
the mean mode is smoothed and the variance mode is
damped. However, for nonlinear operators (gradient mag-
nitude, edge indicator, Perona-Malik diffusion) we have
shown how the stochastic modes are coupled. Thus, vari-
ances of the output images are influenced by gradients of
the mean of the input data. For the Perona-Malik diffu-
sion we have successfully validated our new framework
against a naive Monte-Carlo simulation. Moreover, we could
show experimentally that the stochastic Perona-Malik equa-
tion also has an edge enhancement property. However,
this edge enhancement occurs in regions of low variance
only.

As more complicated demonstrator applications we have
considered various models for the estimation of optical flow.
On several test sequences we have demonstrated the per-
formance of our framework. These numerical tests give

some interesting insights and show how the various build-
ing blocks act together within the flow estimators. Moreover,
we have considered the computation of the bias of the CLG
method. Our framework was able to reproduce the theoreti-
cally predicted curve. In addition to that we have compared
our results with a Monte-Carlo simulation for the bias esti-
mation.

The application of the building blocks for stochastic im-
age processing to existing well known PDE models offer
some very interesting insights and raise many new ques-
tions about the modeling and the propagation of errors. For
the modeling of images as random fields we have assumed
independence of the random variables that steer the behav-
ior of different pixels. In the future we will investigate how
this assumption affects the various existing models in com-
puter vision. We plan to combine our approach with statis-
tic/stochastic data analysis, performing Karhunen Loewe ex-
pansions of the input data. This is going to yield the minimal
set of independent random variables describing the uncer-
tain behavior of the input data. We thus expect to improve
our ansatz space for random images and to provide enhanced
models for computer vision tasks on noisy images.

Future research directions also include a closer analysis
of the bias computation and a correction for optical flow es-
timation, potentially leading to a higher precision of the es-
timation result. For optical flow estimation, most of the cur-
rent estimation schemes are formulated in finite difference
schemes rather than finite element schemes, profiting from
well adapted convolution filters. The implementation of our
framework in a stochastic Galerkin/finite difference scheme
is already under investigation. This work is going to make
our approach compatible with state-of-the-art finite differ-
ence discretizations.

Appendix 1: Summary of Building Blocks and
Stochastic Models

We summarize all ansatz spaces, building blocks and sto-
chastic variants of classical PDE models in computer vision.
Our goal is to provide the reader with a dense and compact
summary of the key ingredients of our framework in order
to support an implementation and a reproduction of our re-
sults.

In the first part, we list the key notation for the ansatz
spaces for static images and image sequences. Moreover, we
tabulate the main formulas for the building blocks. In the
second part, we give all formulas that are relevant for the
implementation of the stochastic analogs of the computer
vision models we have discussed. There, we summarize per
model, which building blocks are used, and how the result-
ing linear systems of equations are constituted.

A.1 Building Blocks
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Ansatz Spaces

Static images
Sect. 2.2

• Spatial domain D = [1,N1] × [1,N2]
• Nodes/pixels of static image xi , i ∈ I = {1, . . . ,M}
• Physical basis functions Pi ∈ C0(D) with Pi(xj ) = δij , for all i, j ∈ I and such that Pi |E is bilinear on each grid cell
• Stochastic domain �∗ = [−1,1]
• Random variables ξ = (ξ1, . . . , ξM). PDFs ρi(ξi )= 1

2• Indexing of stochastic modes α = 1, . . . ,p

• Stochastic basis functions Hα : [−1,1] → R, e.g. Legendre Polynomials on [−1,1]
• Random image f (x, ξ ) =

∑

i∈I

p∑

α=1

f i
α Hα(ξi)Pi(x)

Image sequences
Sect. 2.3

• Spatio-temporal domain R := D × I := ([1,N1] × [1,N2]) × [1,Nt ]
• Nodes/pixels of image sequence yi , i = (ix , it ) ∈ J = {1, . . . ,M} × {1, . . . ,Nt }
• Physical basis functions Pi ∈ C0(R) with Pi(yj ) = δij = δixjx δit jt , for all i, j ∈ J and such that Pi |E is trilinear on

each grid cell
• Stochastic domain �∗ = [−1,1]
• Random variables ξ = (ξ1, . . . , ξM). PDFs ρi(ξi )= 1

2• Indexing of stochastic modes α = 1, . . . ,p

• Stochastic basis functions Hα : [−1,1] → R, e.g. Legendre Polynomials on [−1,1]
• Random image sequence f (y, ξ) =

∑

i∈J

p∑

α=1

f i
αHα(ξix )Pi(y)

For image sequences the temporal behavior of the stochastic processes is modeled through a time-dependence of the coefficients f i
α = f

ix
α (t)

Moment Evaluation

Expectations of products of stochastic
basis functions (18), Sect. 3.6.1

• A
i,j,k,l
α,β,γ,δ =

∫

�

Hα(ξi)H
β(ξj )H

γ (ξk)H
δ(ξl) ρ(ξ )dξ

• B
i,j,k
α,β,γ =

∫

�

Hα(ξi )H
β(ξj )H

γ (ξk)ρ(ξ )dξ

• C
i,j
α,β =

∫

�

Hα(ξi)H
β(ξj )ρ(ξ )dξ

Mean (8), Sect. 3.1 E[f ](x) =
∑

i∈I
f i

1Pi(x) (first mode)

Variance (9), Sect. 3.1 Var [f ](x) =
∑

i∈I

p∑

α=2

C
α,α
i,i (f i

α)2Pi(x)

Covariance (10), Sect. 3.1 Cov [f,g](x) =
∑

i∈I

p∑

α=2

C
α,α
i,i f i

αgi
αPi(x)

Formulas for image sequences: replace index I with J , and x with y

Stochastic Galerkin Method

Projection (evaluation
of nonlinear function),
Sect. 3.2

Coefficients G = (gi
α)α,i , result from matrix-vector multiplication G = M̃−1R with

R =
(

E

[∫

D

g(u)(x, ξ )Hβ(ξj )Pj (x) dx

])

j,β

and (M̃α,β )ij = δi,j δα,β

∑

k∈I

p∑

γ=1

C
α,γ
i,k

∫

D

Pi(x)Pk(x) dx

Gradient magnitude,
Sect. 3.3

Coefficients gi
α = (M̃α,α)−1

ii U · K(i,α) U where
((

K(i,α)

)β,γ )
j,k

= B
α,β,γ

i,j,k

∫

D

Pi(x)∇Pj (x) · ∇Pk(x)dx

Edge indicator function,
Sect. 3.4

Coefficients gi
α = (M̃α,α)−1

ii

∫

�

∫

D

Hα(ξi)Pi(x)

1 + λ−2
∑

j∈I
∑p

β=1 V
j
β Hβ(ξj )Pj (x)

dx ρ(ξ )dξ

Structure tensor
(component (a, b)), Sect. 3.5

Coefficients gi
α = (M̃α,α)−1

ii U · K(i,α) U where
((

K(i,α)

)β,γ )
j,k

= B
α,β,γ

i,j,k

∫

D

Pi(x) ∂aPj (x)∂bPk(x) dx

Integrals resulting from the projection must be evaluated numerically. Only in very few cases analytical expressions for coefficients can be derived
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A.2 Diffusion and Optical Flow Estimation

Stochastic Heat Equation (Linear Diffusion), Sect. 4.1

Required building blocks • Random Image Ansatz Space
• Tensor components C

i,j
α,β for α = β

Input • p modes of the distribution of initial image u0(x, ξ )

Linear system of equations
α,β = 1, . . . , p

p∑

α=1

(Mα,β + τLα,β)(Un)α =
p∑

α=1

Mα,β(Un−1)α

(Mα,β)ij = C
i,j
α,β

(∫

D

Pi(x)Pj (x) dx

)

(Lα,β)ij = C
i,j
α,β

(∫

D

∇Pi(x) · ∇Pj (x)dx

)

Output • p modes of the distribution of smoothed image un(x, ξ ) for each scale step n

Stochastic Perona Malik Model (Nonlinear Diffusion), Sect. 4.2

Required building blocks • Random Image Ansatz Space
• Tensor components B

i,j,k
α,β,γ

• Edge Indicator Function G = (gi
α)

• (Stochastic Heat Equation for Regularization of Gradient Image for Edge Indicator)

Input • p modes of the distribution of initial image u0(x, ξ )

Linear system of equations
α,β = 1, . . . , p

p∑

α=1

(Mα,β + τ(Ln)α,β)(Un)α =
p∑

α=1

Mα,β(Un−1)α

(Mα,β)ij = C
i,j
α,β

(∫

D

Pi(x)Pj (x) dx

)

(Ln)
α,β
ij =

p∑

γ=1

∑

k∈I
(Gn)kγ B

i,j,k
α,β,γ

(∫

D

∇Pi(x) · ∇Pj (x)Pk(x) dx

)

Output • p modes of the distribution of smoothed image un(x, ξ ) for each scale step n

Stochastic Optical Flow Estimation (Stochastic Horn & Schunck Model), Sect. 5.2

Required building blocks • Random Image Sequence Ansatz Space
• Tensor components A

ix,jx ,kx ,lx
α,β,γ,δ and B

ix ,jx ,kx

α,β,γ

• (Edge Indicator Function G = (gi
α))

Input • p modes of the distribution of the image sequence f (y, ξ )

Linear system of equations
α,β = 1, . . . , p

⎛

⎝S
α,β

11 S
α,β

12

S
α,β

21 S
α,β

22

⎞

⎠ + κ

(
Lα,β 0

0 Lα,β

)(
Uα

V α

)
= −

⎛

⎝R
β

1

R
β

2

⎞

⎠

(Sα,β
mn )ij =

N∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δ A
ix ,jx ,kx ,lx
α,β,γ,δ

∫

R

Pi(y)Pj (y)∂mPk(y)∂nPl(y) dy

(Rβ
m)j =

∑

k,l∈J

p∑

γ,δ=1

f k
γ f l

δ B
jx ,kx ,lx
β,γ,δ

∫

R

Pj (y)∂mPk(y)∂tPl(y) dy,

Lα,β as for stochastic heat equation

Output • p modes of the distribution of the x- and y-component of the optical flow field w(y, ξ )
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Stochastic Optical Flow Estimation (CLG Approach), Sect. 5.5

Required building blocks • Random Image Sequence Ansatz Space
• Tensor components A

ix,jx ,kx ,lx
α,β,γ,δ and B

ix ,jx ,kx

α,β,γ

• Structure Tensor Components Jm,t

• Stochastic Heat Equation for smoothing of structure tensor Jm,t
ρ

Input • p modes of the distribution of the image sequence f (y, ξ )

Linear system of equations
α,β = 1, . . . , p

Linear System as for Horn and Schunck model

(Sα,β
mn )ij =

N∑

k∈J

p∑

γ=1

(Jmn
ρ )kγ B

ix ,jx ,kx

α,β,γ

∫

R

Pi(y)Pj (y)Pk(y) dy,

(Rβ
m)j =

∑

k∈J

p∑

γ=1

(Jm,t
ρ )kγ C

jx ,kx

β,γ

∫

R

Pj (y)Pk(y) dy

Lα,β as for stochastic heat equation

Output • p modes of the distribution of the x- and y-component of the optical flow field w(y, ξ )
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