Introduction to Streaming Algorithms

Jeff M. Phillips

September 21, 2011
Network Router

Internet Router

- data per day: at least 1 Terabyte
- packet takes 8 nanoseconds to pass through router
- few million packets per second

What statistics can we keep on data?
Want to detect anomalies for security.
Telephone Switch

Cell phones connect through switches

- each message 1000 Bytes
- 500 Million calls / day
- 1 Terabyte per month

Search for characteristics for dropped calls?
Ad Auction

Serving Ads on web
Google, Yahoo!, Microsoft
 ▶ Yahoo.com viewed 77 trillion times
 ▶ 2 million / hour
 ▶ Each page serves ads; which ones?

How to update ad delivery model?
Flight Logs on Tape

All airplane logs over Washington, DC
- About 500 - 1000 flights per day.
- 50 years, total about 9 million flights
- Each flight has trajectory, passenger count, control dialog

Stored on Tape. Can make 1 pass!
What statistics can be gathered?

What statistics can be gathered?

CPU
Streaming Model

CPU makes "one pass" on data

- Ordered set $A = \langle a_1, a_2, \ldots, a_m \rangle$
- Each $a_i \in [n]$, size $\log n$
- Compute $f(A)$ or maintain $f(A_i)$ for $A_i = \langle a_1, a_2, \ldots, a_i \rangle$.

Length m

Word $\in [n]$
CPU makes "one pass" on data

- Ordered set \(A = \langle a_1, a_2, \ldots, a_m \rangle \)
- Each \(a_i \in [n] \), size \(\log n \)
- Compute \(f(A) \) or maintain \(f(A_i) \) for \(A_i = \langle a_1, a_2, \ldots, a_i \rangle \).
- Space restricted to \(S = O(\text{poly}(\log m, \log n)) \).
- Updates \(O(\text{poly}(S)) \) for each \(a_i \).
Streaming Model

Space:
- Ideally $S = O(\log m + \log n)$
- $\log n =$ size of 1 word
- $\log m =$ to store number of words

- word $\in [n]$
Streaming Model

- **CPU**

- **memory**

- **Space:**
 - Ideally $S = O(\log m + \log n)$
 - $\log n = \text{size of 1 word}$
 - $\log m = \text{to store number of words}$

- **Updates:**
 - $O(S^2)$ or $O(S^3)$ can be too much!
 - Ideally updates in $O(S)$
Easy Example: Average

- Each a_i a number in $[n]$
- $f(A_i) = \text{average}(\{a_1, \ldots, a_i\})$

Problem? s is bigger than a word!

s is not bigger than $(\log s / \log n)$ words (big int data structure)

usually 2 or 3 words is fine
Easy Example: Average

- Each a_i a number in $[n]$
- $f(A_i) = \text{average}\{a_1, \ldots, a_i\}$
- Maintain: i and $s = \sum_{j=1}^{i} a_i$
- $f(A_i) = s/i$

Problem?

s is bigger than a word!

s is not bigger than $(\log s / \log n)$ words (big int data structure)

Usually 2 or 3 words is fine
Easy Example: Average

- Each a_i a number in $[n]$
- $f(A_i) = \text{average}\{a_1, \ldots, a_i\}$
- Maintain: i and $s = \sum_{j=1}^{i} a_i$.
- $f(A_i) = s / i$
- Problem? s is bigger than a word!
Easy Example: Average

- Each a_i a number in $[n]$
- $f(A_i) = \text{average}\{a_1, \ldots, a_i\}$
- Maintain: i and $s = \sum_{j=1}^{i} a_i$
- $f(A_i) = s/i$
- Problem? s is bigger than a word!
 - s is not bigger than $(\log s / \log n)$ words (big int data structure)
 - usually 2 or 3 words is fine
Trick 1: Approximation

Return \(\hat{f}(A) \) instead of \(f(A) \) where

\[
|f(A) - \hat{f}(A)| \leq \varepsilon \cdot f(A).
\]

\(\hat{f}(A) \) is a \((1 + \varepsilon)\)-approximation of \(f(A) \).
Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$|f(A) - \hat{f}(A)| \leq \varepsilon \cdot f(A).$$

$\hat{f}(A)$ is a $(1 + \varepsilon)$-approximation of $f(A)$.

Example: Average

- (a) the count: i
- (b) top $k = \log(1/\varepsilon) + 1$ bits of s: \hat{s}
- (c) number of bits in s
- Let $\hat{f}(A) = \hat{s}/i$

$k = \log(1/\varepsilon)$
Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$|f(A) - \hat{f}(A)| \leq \varepsilon \cdot f(A).$$

$\hat{f}(A)$ is a $(1 + \varepsilon)$-approximation of $f(A)$.

Example: Average

- (a) the count: i
- (b) top $k = \log(1/\varepsilon) + 1$ bits of s: \hat{s}
- (c) number of bits in s
- Let $\hat{f}(A) = \hat{s}/i$

First bit has $\geq (1/2)f(A)$
Second bit has $\leq (1/4)f(A)$
jth bit has $\leq (1/2^j)f(A)$

$$\sum_{j=k+1}^{\infty} (1/2^j)f(A) < (1/2^k)f(A) < \varepsilon \cdot f(A)$$
Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$|f(A) - \hat{f}(A)| \leq \varepsilon \cdot f(A).$$

$\hat{f}(A)$ is a $(1 + \varepsilon)$-approximation of $f(A)$.

Example: Average

▶ (a) the count: i
▶ (b) top $k = \log(1/\varepsilon) + 1$ bits of s: \hat{s}
▶ (c) number of bits in s
▶ Let $\hat{f}(A) = \hat{s}/i$

First bit has $\geq (1/2)f(A)$
Second bit has $\leq (1/4)f(A)$
jth bit has $\leq (1/2^j)f(A)$

$$\sum_{j=k+1}^{\infty} (1/2^j)f(A) < (1/2^k)f(A) < \varepsilon \cdot f(A)$$

Where did I cheat?
Trick 2: Randomization

Return $\hat{f}(A)$ instead of $f(A)$ where

$$\Pr \left[|f(A) - \hat{f}(A)| > \varepsilon \cdot f(A) \right] \leq \delta.$$

$\hat{f}(A)$ is a $(1 + \varepsilon, \delta)$-approximation of $f(A)$.

Trick 2: Randomization

Return $\hat{f}(A)$ instead of $f(A)$ where

$$\Pr \left[|f(A) - \hat{f}(A)| > \varepsilon \cdot f(A) \right] \leq \delta.$$

$\hat{f}(A)$ is a $(1 + \varepsilon, \delta)$-approximation of $f(A)$.

Can fix previous cheat using randomization and Morris Counter (Morris 78, Flajolet 85)
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, 1/2 of email receivers got good advice.

After k weeks 100 receivers got good advice

▶ IC now asks each for money to receive future stock tricks.

▶ Don't actually do this!!!
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1/2$ of email receivers got good advice.

Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1/4$ of all receivers have gotten good advice twice.
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1/2$ of email receivers got good advice.

Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1/4$ of all receivers have gotten good advice twice.

After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.

Don’t actually do this!!!
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, 1/2 of email receivers got good advice.

Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, 1/4 of all receivers have gotten good advice twice.

After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- Don’t actually do this!!!
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, 1/2 of email receivers got good advice.

Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, 1/4 of all receivers have gotten good advice twice.

After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- **Don’t actually do this!!!**

If you are on IC’s original email list, with what probability will you receive k good stock tips?
Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^k emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, 1/2 of email receivers got good advice.

Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, 1/4 of all receivers have gotten good advice twice.

After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- Don’t actually do this!!

If you are on IC’s original email list, with what probability will you receive k good stock tips?

$$1 - (1/2)^k$$
Markov Inequality

Let X be a random variable (RV).
Let $a > 0$ be a parameter.

$$\Pr[|X| \geq a] \leq \frac{\mathbb{E}[|X|]}{a}.$$
Chebyshev’s Inequality

Let Y be a random variable. Let $b > 0$ be a parameter.

$$
\Pr[|Y - \mathbb{E}[Y]| \geq b] \leq \frac{\text{Var}[|Y|]}{b^2}.
$$
Chernoff Inequality

Let \(\{X_1, X_2, \ldots, X_r\} \) be independent random variables.
Let \(\Delta_i = \max\{X_i\} - \min\{X_i\} \).
Let \(M = \sum_{i=1}^{r} X_i \).
Let \(\alpha > 0 \) be a parameter.

\[
\Pr \left[\left| M - \sum_{i=1}^{r} \mathbb{E}[X_i] \right| \geq \alpha \right] \leq 2 \exp \left(-\frac{2\alpha^2}{\sum_{i} \Delta_i^2} \right)
\]
Chernoff Inequality

Let \(\{X_1, X_2, \ldots, X_r\} \) be independent random variables.
Let \(\Delta_i = \max \{X_i\} - \min \{X_i\} \).
Let \(M = \sum_{i=1}^{r} X_i \).
Let \(\alpha > 0 \) be a parameter.

\[
\text{Pr} \left[|M - \sum_{i=1}^{r} \mathbb{E}[X_i]| \geq \alpha \right] \leq 2 \exp \left(\frac{-2\alpha^2}{\sum_i \Delta_i^2} \right)
\]

Often: \(\Delta = \max_i \Delta_i \) and \(\mathbb{E}[X_i] = 0 \) then:

\[
\text{Pr} [|M| \geq \alpha] \leq 2 \exp \left(\frac{-2\alpha^2}{r \Delta_i^2} \right)
\]