CS7960 L9 : Streaming | Heavy Hitters
= Approximate Counts

Streaming Algorithms

Stream : \(A = \{a_1, a_2, \ldots, a_m\} \)
\(a_i \in [n] \) size \(\log n \)
Compute \(f(A) \) in \(\text{poly}(\log m, \log n) \) space

Let \(f_j = \left| \{a_i \in A \mid a_i = j\} \right| \)

MAJORITY: if some \(f_j > m/2 \), output \(j \)
else, output NULL

one-pass requires \(\Omega(\min\{m, n\}) \) space
Simpler:
FP-MAJORITY: if some \(f_j > \frac{m}{2} \),
output \(j \)
else,
output anything

How good w/ \(O(\log m + \log n) \) (one counter \(c \) + one location \(l \))? ...

#############################
c = 0, \(l = X \)
for (\(a_i \in A \))
 if (\(a_i = l \)) \(c += 1 \)
 else \(c -= 1 \)
 if (\(c \leq 0 \)) \(c = 1, l = a_i \)
return \(l \)
#############################

Analysis: if \(f_j > \frac{m}{2} \), then
 if (\(l \neq j \)) then \(c \) decremented at most \(< \frac{m}{2} \) times, but \(c > \frac{m}{2} \)
 if (\(l = j \)) can be decremented \(< \frac{m}{2} \) times
2, but is incremented > m/2
if f_j < m/2 for all j, then any
answer ok.

----- another view of analysis ------
Let f_j > m/2, and k = m - f_j.
After s steps, let g_s = unseen
elements of index j
 let k_s = unseen
elements != index j
 let c_s = c if l!=j,
and -c if l==j
Claim: g_s > c+k_s
 base case (s=0, or even s=1) easily
 true.
 Inductively 4 cases:
 a_i = l = j : (g_s decremented, c
decremented)
 a_i = l != j: (c incremented, k_s
decremented)
 a_i !=l != j: (c decremented, k_s
decremented)
 a_i !=l = j : (k_s decremented,
maybe c incremented)

Since at the end \(g_s = k_s = 0 \), then
\[
0 > c + 0, \text{ implies } c < 0, \text{ and }
\]
l==j.

FREQUENT: for k, output the set \(\{j : f_j > m/k\} \)
also hard.

k-FREQUENCY-ESTIMATION: Build data structure \(S \).
For any \(j \) in \([n]\), \(\hat{f}_j = S(j) \)
s.t.
\[
f_j - m/k \leq \hat{f}_j \leq f_j
\]
aka \(\epsilon \)-approximate \(\phi \)-HEAVY-HITTERS:
Return all \(f_j \) s.t. \(f_j > \phi \)
Return no \(f_j \) s.t. \(f_j < \phi - \epsilon m \)
Misra-Gries Algorithm [Misra-Gries '82]

Solves k-FREQUENCY-ESTIMATION in $O(k(\log m + \log n))$ space.

Let C be array of k counters $C[1], C[2], \ldots, C[k]$
Let L be array of k locations $L[1], L[2], \ldots, L[k]$

Set all $C = \emptyset$
Set all $L = X$

for $(a_i \in A)$
 if $(a_i \in L) \text{ <at index } j>
\[C[j] += 1 \]
else
 \[a_i \notin L \]
 if (|L| < k)
 \[C[j] = 1 \]
 \[L[j] = a_i \]
 else
 \[C[j] -= 1 \] forall \(j \in [k] \)
 for (j in [k])
 if (C[j] <= 0) set \(L[j] = X \)

On query \(q \) in \([n]\)
 if (q in L \{L[j]=q\}) return \hat{f}_q \]
_q = C[j]
else
 return \hat{f}_q \]
_q = 0

Analysis

A counter \(C[j] \) representing \(L[j] = q \)
is only incremented if \(a_i = q \)
$\hat{f}_q \leq f_q$

If a counter $C[j]$ representing $L[j] = q$ is decremented, then $k-1$ other counters are also decremented. This happens at most m/k times.

A counter $C[j]$ representing $L[j] = q$ is decremented at most m/k times.

$f_q - m/k \leq \hat{f}_q$

How do we get an additive ε-approximate FREQUENCY-ESTIMATION? i.e. return \hat{f}_q s.t.

$|f_q - \hat{f}_q| \leq \varepsilon m$

Set $k = 2/\varepsilon$, return $C[j] + (m/k)/2$
Space $O((1/\varepsilon) (\log m + \log n))$

Also:
eps-approximate phi-HEAVY-HITTERS for any $\phi > m*\varepsilon$ in
space $O((1/\varepsilon) (\log m + \log n))$

Can solve k-FREQUENT optimally in two passes w/ $O(k(\log n + \log m))$ space. Run M-G algorithm w/ k counters. For each stored location, make second pass and count exactly.