Streaming Algorithms

Stream: \(A = \langle a_1, a_2, \ldots, a_m \rangle \)
\(a_i \in [n] \) size \(\log n \)
Compute \(f(A) \) in poly(\(\log m, \log n \)) space

Goal: randomly sample \(k \) elements from stream
\(O(k \log n + \log m) \) space

Simpler question: randomly sample one element from stream
\(O(\log n + \log m) \) space

\(O(\log n) \) to store element \(S \)
\(O(\log m) \) to keep count of how many seen so far \(C \)

wp \(k/i \) keep \(a_i \) in register, replace old \(S \) w/ \(a_i \)
[Vitter '85]

Analysis:
What is probability \(a_m \) should be kept? \(k/m \) -- good.
What is probability \(a_{m-1} \) should be kept?
\((k/(m-1)) \times (1 - (k/m)(1/k)) = (k-m)/(m-1) \) -- good.
[kept][not replaced by \(a_m \)]
Inductively, ignoring \(a_{i+1} \ldots a_m \)
what is probability \(a_i \) should be kept to that point? \(k/i \)
Assume \(a_{i+1} \ldots a_m \) kept with correct probability: total \((m-i)/k \times k/m = (m-i)/m \)
\(a_i \) in \(S \) after processed wp \(k/i \)
not replaced afterwards wp \(1-(m-i)/m = i/m \)
total (kept) * (not replaced) = \(k/i \times i/m = k/m \) -- good.

(\(\varepsilon, \delta \))-Approximate Counts:

Consider Interval \(I \) subset \([n]\)
\(\text{count}(I) = |\{a_i \text{ in } A : a_i \text{ in } I\}| \)

Goal: Data structure \(S \) s.t. for query interval
\(\Pr[|S(I) - \text{count}(I)| > \varepsilon \times m] < \delta \)

Chernoff Inequality

Let \(\{X_1, X_2, \ldots, X_r\} \) be independent RVs
Let \(\Delta_i = \max(X_i) - \min(X_i) \)
Let \(M = \sum_i X_i \)
\(\Pr[|M - \sum_i E[X_i]| > \alpha \] < 2 \exp(-2 \alpha^2 / \sum_i (\Delta_i)^2) \)
often: \(\Delta = \max_i \Delta_i \) and \(E[X_i] = 0 \) then:
Pr[|M| > alpha] < 2 \exp(- 2 \alpha^2 / \Delta^2)

Let S be a random sample of size \(k = O(\frac{1}{\varepsilon^2} \log \frac{1}{\delta}) \)

\(S(I) = |\{ S \cap I\}| * \frac{m}{k} \)

Each \(s_i \) in \(I \) wp \(\frac{\text{count}(I)}{m} \)

- RV \(Y_i = \begin{cases} 1 & \text{if } s_i \text{ in } I, 0 & \text{if } s_i \text{ !in } I \end{cases} \)

 \(E[Y_i] = \frac{\text{count}(I)}{m} \)

- RV \(X_i = \frac{Y_i - \text{count}(I)/m}{k} \)

 \(E[X_i] = 0 \)

\(\Delta < \frac{1}{k} \)

\(M = \sum_i X_i \) = error on count estimate by \(S \)

Pr[|M| > \varepsilon] < 2 \exp(- 2 \varepsilon^2 / (k \Delta^2)) < \delta

Solve for \(k \) in \(\varepsilon, \delta \):

- \(2 \exp(- 2 \varepsilon^2 k) < \delta \)
- \(\exp(2 \varepsilon^2 k) > \frac{2}{\delta} \)
- \(2 \varepsilon^2 k > \ln(\frac{2}{\delta}) \)
- \(k > (\frac{1}{2}) \frac{1}{\varepsilon^2} \ln \frac{2}{\delta} \)

 \(= O(\frac{1}{\varepsilon^2} \log \frac{1}{\delta}) \)