CS7960 L4 : Basic I/O data structures + sorting

Disk <-I/O--> RAM <-- CPU
N = size of problem
B = block size
M = size of memory
T = size of output
I/O = block move between disk + memory

Basic Data structures:

Stack: FILO
<-> [] [] [][....]
Maintain push/pop blocks in RAM

Queue: FIFO
push -> [][....][][] -> pop
Maintain push and pop blocks in RAM
O(N/B) push/pop operations

Sorting :

< M/B sorted lists (queues) merged in O(N/B) I/Os

[[....]] [] -> ||
[[....]] [] -> ||
... -> || -> [][.....]
[[....]] [] -> ||

Unsorted list (queue) distributed w/ < M/B splits in O(N/B) I/Os

|| [][.....]
[[.....]] [] -> || [][.....]
|| [][.....]
|| [][.....]

Merge Sort: <how to do it?>
- create N/M (size M) sorted lists
- merge list together O(M/B) at a time
<number>

[[...] [...] 1]
[M][M][M] [M][M] N/M (sorted v)
Do you use Merge sort in internal memory?
- *quick*, heap, bucket?

Selection

Find median in \(O(N/B)\) time.
http://www.ics.uci.edu/~eppstein/161/960130.html

Median(D, k=N/2)

Input: Data set \(D\), size \(N\).
(1) Partition \(D\) into sets of size 5. Find median of each \(\rightarrow M\) size \(N/5\).
(2) \(m = \text{Median}(M, |M|/2)\)
(3) \(\text{L items } l\) in \(D\) w/ \(l < m\)
 \(\text{R items } r\) in \(D\) w/ \(r < m\)
(4) \(-\) if \(|L| = N/2-1\) return \(m\)
 \(-\) if \(|L| > N/2\) return \(\text{Median}(L, k)\)
 \(-\) else return \(\text{Median}(R, k-|L|-1)\)

What is runtime \(T(N)\)?
- Step (1)+(3) in \(O(N/B)\) I/Os
- Step (2) in time \(T(N/5)\)
- Step (4) in time at most \(T(N(7/10))\)

\[T(N) = O(N/B) + T(N/5) + T(N(7/10)) = ??? \]
\[= O(N/B) \text{ I/Os} \]

[Generalizes to any \(k\)]

Quick Sort ("Distribution Sort")

(1) Compute \(\Theta(M/B)\) splitting elements
 \(O(M/B) \times O(N/B) = O(MN/B^2)\)
(2) Compute \(O(M/B)\) unsorted lists of equal size
(3) Recur on each list
 \[T(N) = O(N/B \times (M/B)) + (M/B) T(NB/M) \]
 \[= O(???) \]
= \(O((M/B) \times N/B \log_{M/B} (N/B))\)

Extra \((M/B)\) term -- Any ideas?
A: Find \(\sqrt{M/B}\) elements in \(O(N/B)\) I/Os
- partitions lists into size at most \((3/2) N/\sqrt{M/B}\)
\(O(N/B) \log_{\{\sqrt{M/B}\}} (N/M)) = O((N/B) \log_{M/B} (N/B))\)

Sorting Lower Bound:
\(\Omega((N/B) \log_{M/B} (N/B))\)

even stronger, permuting takes \(\Omega((N/B) \log_{M/B} (N/B)).\)
Takes \(\Theta(N)\) in internal memory.