distributed nodes

Many nodes in graph
 - each node knows only small number of neighbors
 - need to communicate or calculate

Key bottleneck is communication

Mergeable Summaries:

Many unorganized nodes [1,...,k] each with data X_i.
 <Connected in tree structure>

\[X = \bigcup_{i} X_i \]

Want \(S = \text{summ}(X) \), but don't want to send X.

Key operation:
 - given \(S_1 = \text{summ}(X_1) \) and \(S_2 = \text{summ}(X_2) \)
 - produce \(S_{12} = \text{summ}(X_1 \cup X_2) \)

Example: \(X_1 = \{1,2,3,8,9\} \)
 \(X_2 = \{4,5,89,90,91\} \)
 \(X_3 = \{6,7,92,93,94\} \)

\(m_1 = \text{median}(X_1) = 3 \)
\(m_2 = \text{median}(X_2) = 89 \)
\(m_3 = \text{median}(X_3) = 92 \)
\(\text{median}\{m_1,m_2,m_3\} = 89 \)
\(\text{median}(X_1 \cup X_2 \cup X_3) = 8 \)

Often error (or size) accumulates

Goal: \(S = \text{summ}(X) \) is a \(\epsilon \)-approximation of \(X \)

\(X \) multi-subset \([n]\)
\(f_i = |\{x_j \in X \mid x_j = i\}| \)

\(\epsilon \)-approx frequency values
\(|f_i - \bar{f}_i| \leq \epsilon \)
\(F_1 = \epsilon m \)

\(f_i \)
size $S = 1/\varepsilon$

- error is relative
- size depends only on ε

key operation:
given: $S_1 = \text{sum}(X_1)$, $S_2 = \text{sum}(X_2)$
 - S_i is ε-approx of X_i
 - size(S_i) = $f(1/\varepsilon)$
output: $S_{12} = \text{sum}(X_1 \cup X_2)$
 - S_{12} is ε-approx of $X_1 \cup X_2$
 - size(S_{12}) = $f(1/\varepsilon)$

* neither size, nor error increase

Misra-Gries Summaries:
$S =$
Let C be array of k counters $C[1], C[2], \ldots, C[k]$
Let L be array of k locations $L[1], L[2], \ldots, L[k]$

$S_1 = (C_1, L_1) = \text{sum}(X_1)$
$S_2 = (C_2, L_2) = \text{sum}(X_2)$

$k = 1/\varepsilon = 3$

S_{12} [1 + 0] [2 + 3] [0 + 4] [0 + 0] [3 + 0] [0 + 2]
 -> [1] [5] [4] [0] [3] [2]*
 -> [0] [3] [2] [0] [1] [0]

- add like counters together (at most $2k$)
- retain just top k after subtracting $C[k+1]$, set rest to 0.

proof:
Each subtraction removes $\geq k$ items
can subtract at most m/k times
each value $\sim f_i$ in $[f_i, f_i - m/k] = [f_i, f_i - \varepsilon m]$

comutative, associative

Any linear summary:
$\text{sum}(X_{12}) = \text{sum}(X_1) + \text{sum}(X_2)$
Any idempotent summary:
\[\max(X_{12}) = \max\{\max(X_1), \max(X_2)\} \]

count-min sketch

t independent hash functions \{h_1, ..., h_t\}
each \(h_i : [n] \rightarrow [k] \)

2-d array of counters:
h_1 \rightarrow [C_{1,1}] [C_{1,2}] ... [C_{1,k}]
h_2 \rightarrow [C_{2,1}] [C_{2,2}] ... [C_{2,k}]
... ...
\(h_t \rightarrow [C_{t,1}] [C_{t,2}] ... [C_{t,k}] \)

for each \(a \in A \) -> increment \(C_{i,h_i(a)} \) for \(i \) in \([t]\).

\(\hat{f}_a = \min_{i \in [t]} C_{i,h_i(a)} \)

Set \(t = \log(1/\delta) \)
Set \(k = 2/\varepsilon \)

can add or subtract!

\(-\) 11111111111
Random Sample size \(k = O(1/\varepsilon^2) = S \)
\(R_{-\text{rank}}(S(v)) = S(v) \)
\(|R_{-\text{rank}}(v) - S(v)| <= \varepsilon \)

\(S_1 = \{(s_1, u_1), (s_2, u_2), ...\} \)
\(S_2 = \{(s_1, u_1), (s_2, u_2), ...\} \)
- \(u_i \) at random for each \(s_i \)
- keep top \(k \) values \(u_i \) (and paired \(s_i \))
easily mergeable, maintain random sample size k.

Maintain sorted list of size \(k = O(1/\epsilon \sqrt{\log(1/\epsilon)}) \)

\(S_1 = \{s_{11}, s_{12}, s_{13}, \ldots, s_{1k}\} \)
\(S_2 = \{s_{21}, s_{22}, s_{23}, \ldots, s_{2k}\} \)

s.t. \(s_{i,j} < s_{i,j+1} \) for \(i = \{1,2\} \)

\(S_{12} = \)
1. merge sort \(S_1, S_2 \) -> ordered list size 2k
2. select even points / odd points at random

***magically, error does not accumulate, nor probability of failure
older merges less important towards relative error

above only works for \(|X_1| = |X_2|\)

if not true, need size \(O((1/\epsilon) (\log(1/\epsilon))^{3/2}) \)