MapReduce

D = Massive Data

Mapper(D): d in D -> {(key, value)}

Shuffle({(key, value)}) -> group by "key"

Reducer ("key, value_i") -> ("key, f(value_i))

Can repeat, constant # of rounds

"Filtering" idea:
consider subproblems -> drop many data points
recur until fits in memory, solve in-core

Given graph G=(V,E)

Assume |V|=n and |E| = m = n^{1+c}
 typical large graphs have c in [0.08, 0.5]
size of input is N = O(n^{1+c})

Find MST: (minimum spanning tree)

<MSF = minimum spanning forest, may not be connected>

each machine has memory M = 2 * n^{1+eps} = O(N^{1-gamma})
 for 0 < eps < c and gamma > 0
 (otherwise |G| <= M)

P = Theta(n^{c-eps}) so data just fits on machines

Map:
Partition E -> \{E_1,E_2,...E_k\}
so E_i = \Theta(M)
k = 2 (|E_1|/M)
(each edge e a random number i in [k]) -> (i,e)

Reduce:
compute MSF(V,E_i) -> (V,E_i')
E' = U_i E_i'
If |E'| < M, solve on 1 machine
else : repeat M+R

Proof:
3 parts (A) gives correct MST
 (B) finishes in constant number of rounds
 (C) no node has more than 2 * n^{1+eps} whp.

(A) Correctness:
Each edge thrown out was part of cycle, and was longer than all other edges.
 -> not in MST
 -> no edges in full MST thrown out.

(B): Constant number of rounds:
Each round decreases the size by a factor about n^{eps}.
 m_1 = |E'| <= k(n-1) = O(n^{1+c-eps})
 m_r = m_{r-1} / n^{eps}
 -> requires c/eps iterations

Another view: If n^{1+c} = N, and n^{1+eps} = M,
 then requires R = log_M N rounds.

R = log_M N seems to be the goal in the number of rounds needed for hard problems...

(C) no Memory overflow:
Lemma. No machine has $|E_{il}| > M = 2 \cdot n^{1+\varepsilon}$ wp $> 1/2$
(follows from Chernoff bound)

+++++++++++++++++++++++++++++++
Chernoff Inequality

Let $\{X_1, X_2, ..., X_r\}$ be independent RVs
Let $\Delta_i = \max(X_i) - \min(X_i)$
Let $S = \sum_i X_i$

Pr[$|S - \sum_i E[X_i]| > \alpha$] $< 2 \exp(- \frac{2 \alpha^2}{\sum_i (\Delta_i)^2})$

often: $\Delta = \max_i \Delta_i$ then:
Pr[$|S - \sum_i E[X_i]| > \alpha$] $< 2 \exp(- \frac{2 \alpha^2}{r \Delta^2})$

+++++++++++++++++++++++++++++++

Let X_i represent edge i is in node j
$\Delta_i = 1-0 = 1; \Delta = 1$
$S =$ number of edges on node j
$\sum_i E[X_i] = n^{1+\varepsilon}$

Let $\alpha = n^{1+\varepsilon}$
Pr[$S > 2 \cdot n^{1+\varepsilon}$] \leq
Pr[$|S - n^{1+\varepsilon}| > n^{1+\varepsilon}$] $<$
$2 \exp(-2 \frac{(n^{1+\varepsilon})^2}{n^{1+c}} \cdot \varepsilon^2)$
$\leq 2 \exp(-2 n^{1+2\varepsilon-c})$ let $\beta = 1+\varepsilon-c$ be a constant, $\beta > 0$

with high probability (whp) (probability $\leq e^{-\text{poly}(n)}$):
any node j has fewer than $2 \cdot n^{1+\varepsilon}$ edges

to show for all $k = n^{1+\varepsilon}$ nodes, we need to use union bound:
no node has probability greater than $e^{-n^{\beta+\varepsilon}}/k$
easy to show that $n^{\beta+\varepsilon}/\log(n^{1+\varepsilon}) > n^\beta$
all nodes j has fewer than $2 \cdot n^{1+\varepsilon}$ edge whp

--
Also w/ "filtering"
- maximal matchings
- approximate maximal weighted matchings
- minimum cut